Home
Class 12
MATHS
lim(x->0) {(1+x)^(2/x)} (where {.} denot...

`lim_(x->0) {(1+x)^(2/x)}` (where {.} denotes the fractional part of x

(a) `e^2−7`

(b) `e^2−8`

(c) `e^2−6`

(d) none of these

A

1

B

`e`

C

`e^(-1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(1+x)^(2//x)=(1+x)^(2//x)-[(1+x)^(2//x)]`
Now, `underset(xto0)lim(1+x)^(2//x)=e^(2)`
or`underset(xto0)lim{(1+x)^(2//x)}=e^(2)-[e^(2)]=e^(2)-7`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The period of function 2^({x})+sinpix+3^({x/2})+cos2pix (where {x} denotes the fractional part of (x) is 2 (b) 1 (c) 3 (d) none of these

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

The total number of solution of sin{x}=cos{x} (where {} denotes the fractional part) in [0,2pi] is equal to 5 (b) 6 (c) 8 (d) none of these

int_(-1)^2[([x])/(1+x^2)]dx ,w h e r e[dot] denotes the greater integer function, is equal to (a) -2 (b) -1 (c) 0 (d) none of these

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

The value of lim_(m->oo)(cos(x/m))^("m") is 1 (b) e (c) e^(-1) (d) none of these

The function x^x decreases in the interval (a) (0,e) (b) (0,1) (c) (0,1/e) (d) none of these

lim_(x to 0) (e^(13x)-e^(7x))/x

The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (where [.] represents the greatest integer function). -1 (b) 1 (c) 0 (d) none of these

lim_(x to 0)(1+4x)^((x+2)/(x))=e^(8)

CENGAGE PUBLICATION-LIMITS-Exercises (Single Correct Answer Type)
  1. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  2. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  3. lim(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x ...

    Text Solution

    |

  4. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  5. ("lim")(x->0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) -2 ...

    Text Solution

    |

  6. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  7. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  8. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  9. ("lim")(xto1)(n x^(n+1)-(n+1)x^n+1)/((e^x-e)sinpix),\ where \n=100 , ...

    Text Solution

    |

  10. lim(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

    Text Solution

    |

  11. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  12. The value of lim(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is (a)1/2 ...

    Text Solution

    |

  13. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  14. If lim xto0(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  15. If lim(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  16. ("lim")(x -> 0)((1+tanx)/(1+sinx))^(cos e cx) is equal to (a)e ...

    Text Solution

    |

  17. The value of lim(x->1)(2-x)^(tan((pix)/2)) is (a)e^(-2/pi) (b) e^...

    Text Solution

    |

  18. The value of ("lim")(xvecoo)(cos"x"/"m")^("m") is 1 (b) e (c) e^(-1...

    Text Solution

    |

  19. ("lim")(xvecoo)((n^2)/(n^2))^(n(n-1)i se q u a lto e (b) e^2 (c) e^(...

    Text Solution

    |

  20. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |