Home
Class 12
MATHS
The value of lim(xtooo) ((2^(x^(n)))e^((...

The value of `lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n))` (where `n in N`) is

A

`e`

B

0

C

`e^(-1)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B

`L=underset(xtooo)lim((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n))=underset(xtooo)lim((3)^((x^(n))/(e^(x)))(((2)/(3))^((x^(n))/(e^(x)))-1))/(x^(n))`
Now, `underset(xtooo)lim(x^(n))/(e^(x))=underset(xtooo)lim(n!)/(e^(x))=0`
(Differentiating numerator and denominator `n` times for L'Hospital's rule)
Hence, `L=underset(xtooo)lim(3)^((x^(n))/(e^(x)))underset(xtooo)lim((((2)/(3))^((x^(n))/(e^(x)))-1))/((x^(n))/(e^(x)))underset(xtooo)lim(1)/(e^(x))`
`=1xxlog(2//3)xx0=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

lim_(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is :

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), n in N , equals

The value of lim_(x rarr 1) (x+x^2+...+x^n-n)/(x-1) is

If lim_(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3 , then the range of x is (where n in N )

The value of lim_(xrarr0)(1^x+2^x+3^x+...+n^x)^(a//x)/n , is:

Evaluate lim_(ntooo) (1)/(n^(2(log_(e)n-log_(e)(n+1)))+n) .

CENGAGE PUBLICATION-LIMITS-Exercises (Single Correct Answer Type)
  1. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  2. lim(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x ...

    Text Solution

    |

  3. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  4. ("lim")(x->0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) -2 ...

    Text Solution

    |

  5. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  6. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  7. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  8. ("lim")(xto1)(n x^(n+1)-(n+1)x^n+1)/((e^x-e)sinpix),\ where \n=100 , ...

    Text Solution

    |

  9. lim(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

    Text Solution

    |

  10. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  11. The value of lim(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is (a)1/2 ...

    Text Solution

    |

  12. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  13. If lim xto0(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  14. If lim(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. ("lim")(x -> 0)((1+tanx)/(1+sinx))^(cos e cx) is equal to (a)e ...

    Text Solution

    |

  16. The value of lim(x->1)(2-x)^(tan((pix)/2)) is (a)e^(-2/pi) (b) e^...

    Text Solution

    |

  17. The value of ("lim")(xvecoo)(cos"x"/"m")^("m") is 1 (b) e (c) e^(-1...

    Text Solution

    |

  18. ("lim")(xvecoo)((n^2)/(n^2))^(n(n-1)i se q u a lto e (b) e^2 (c) e^(...

    Text Solution

    |

  19. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  20. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is :

    Text Solution

    |