Home
Class 12
MATHS
If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo ...

If `lim_(xtoa)f(x)=1` and `lim_(xtoa)g(x)=oo` then `lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x))`
`lim_(xto0)((x-1+cosx)/x)^(1/x)` is equal to

A

`f(1+0)=-1,f(1-0)=0`

B

`f(1+0)=0=f(1-0)`

C

`underset(xto1)limf(x)` exists

D

`underset(xto1)f(x)` does not exist

Text Solution

Verified by Experts

The correct Answer is:
B

`cos(tanx)-cosx=2sin((x+tanx)/(2))sin((x-tanx)/(2))`
or `underset(xto0)lim(cos(tanx)-cosx)/(x^(4))`
`=underset(xto0)lim(2sin((x+tanx)/(2))sin((x-tanx)/(2)))/(x^(4))`
`=underset(xto0)lim(2sin((x+tanx)/(2))sin((x-tanx)/(2)))/(x^(4)((x+tanx)/(2))((x-tanx)/(2)))((x^(2)-tan^(2)x)/(4))`
`=(1)/(2)underset(xto0)lim(x^(2)-tan^(2)x)/(x^(4))`
`=(1)/(2)underset(xto0)lim(x^(2)-(x+(x^(3))/(3)+(2)/(15)x^(5)+...)^(2))/(x^(4))`
`=(1)/(2)underset(xto0)lim(1)/(x^(2))(1-(1+(x^(2))/(3)+(2)/(15)x^(4)+...)^(2))=-(1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

Evaluate: lim_(xto0)((x-1+cosx)/(x))^(1//x)

lim_(x to 0) (1-cosx)/x^2 = ?

lim_(x->0) (Cosx -1)/x is equal to

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

lim_(xto0+)(e^x+x)^((1)/(x))

Evaluate: lim_(xto0)(sinx+cosx)^(1//x)

If lim_(x to 0)x^((1)/(1-x))=e^(-1)

If lim_(x->a)[f(x)g(x)] exists, then both lim_(xtoa)f(x) and lim_(x->a)g(x) exist.

CENGAGE PUBLICATION-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. ("lim")(xto1)(n x^(n+1)-(n+1)x^n+1)/((e^x-e)sinpix),\ where \n=100 , ...

    Text Solution

    |

  4. lim(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is (a)1/2 ...

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If lim xto0(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  9. If lim(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. ("lim")(x -> 0)((1+tanx)/(1+sinx))^(cos e cx) is equal to (a)e ...

    Text Solution

    |

  11. The value of lim(x->1)(2-x)^(tan((pix)/2)) is (a)e^(-2/pi) (b) e^...

    Text Solution

    |

  12. The value of ("lim")(xvecoo)(cos"x"/"m")^("m") is 1 (b) e (c) e^(-1...

    Text Solution

    |

  13. ("lim")(xvecoo)((n^2)/(n^2))^(n(n-1)i se q u a lto e (b) e^2 (c) e^(...

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is :

    Text Solution

    |

  16. The value of lim(xrarr0)(1^x+2^x+3^x+...+n^x)^(a//x)/n, is:

    Text Solution

    |

  17. The value of ("lim")(xvec1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal ...

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is

    Text Solution

    |