Home
Class 12
MATHS
("lim")(x -> 0)((1+tanx)/(1+sinx))^(cos ...

`("lim")_(x -> 0)((1+tanx)/(1+sinx))^(cos e cx)` is equal to

(a)e

(b) `1/e`

(c) 1

(d) none of these

A

`underset(xto0)limf(x)` exists for `ngt0`

B

`underset(xto0)limf(x)` does not exists for `nlt0`

C

`underset(xto0)limf(x)` does not exists for any value of n

D

`underset(xto0)limf(x)` exists for any value of n

Text Solution

Verified by Experts

The correct Answer is:
C

`underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx)=underset(xto0)lim((1+tanx)^((1)/(sinx)))/((1+sinx)^((1)/(sinx)))`
`=(underset(xto0)lim((1+tanx)^((1)/(tanx)))^((1)/(cosx)))/((1+sinx)^((1)/(sinx)))`
`=(e^((1)/(cos0)))/(e)=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

I=int(e^x(1+sinx))/(1+cosx)dx is equal to

lim_(x->0) (sinx^n)/((sinx)^m),(mltn), is equal to (a) 1 (b) 0 (c) n//m (d) none of these

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

The value of "tan"(sin^(-1)("cos"(sin^(-1)x)))"tan"(cos^(-1)(sin(cos^(-1)x))),w h e r ex in (0,1), is equal to (a) 0 (b) 1 (c) -1 (d) none of these

f(x)=(1n(x^2+e^x))/(1n(x^4+e^(2x)))dotT h e n lim_(x->oo)f(x) is equal to (a) 1 (b) 1/2 (c) 2 (d) none of these

If lim_(x to 0)x^((1)/(1-x))=e^(-1)

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

("lim")_(xto0)1/xcos^(-1)((1-x^2)/(1+x^2)) is equals to (a)1 (b) 0 (c) 2 (d) none of these

lim_(n->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

int(ln(tanx)/(sinxcosx)dx is equal to (a) 1/2ln(tanx)+c (b) 1/2ln(tan^2x)+c (c) 1/2(ln(tanx))^2+c (d) none of these

CENGAGE PUBLICATION-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. ("lim")(xto1)(n x^(n+1)-(n+1)x^n+1)/((e^x-e)sinpix),\ where \n=100 , ...

    Text Solution

    |

  4. lim(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is (a)1/2 ...

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If lim xto0(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  9. If lim(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. ("lim")(x -> 0)((1+tanx)/(1+sinx))^(cos e cx) is equal to (a)e ...

    Text Solution

    |

  11. The value of lim(x->1)(2-x)^(tan((pix)/2)) is (a)e^(-2/pi) (b) e^...

    Text Solution

    |

  12. The value of ("lim")(xvecoo)(cos"x"/"m")^("m") is 1 (b) e (c) e^(-1...

    Text Solution

    |

  13. ("lim")(xvecoo)((n^2)/(n^2))^(n(n-1)i se q u a lto e (b) e^2 (c) e^(...

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is :

    Text Solution

    |

  16. The value of lim(xrarr0)(1^x+2^x+3^x+...+n^x)^(a//x)/n, is:

    Text Solution

    |

  17. The value of ("lim")(xvec1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal ...

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is

    Text Solution

    |