Home
Class 12
MATHS
A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," a...

`A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n).`
If `1lemlen,minN,` then `underset(xtoa_(m))lim(A_(1)A_(2)...A_(n))`

A

`e^(-(1)/(4))`

B

`e^(-(1)/(2))`

C

`e^(-2)`

D

`e^(-4)`

Text Solution

Verified by Experts

The correct Answer is:
D

We have `A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...n,`
and `a_(1)lta_(2)lt...lta_(n-1)lta_(n).`
Let x be in the left neighborhood of `a_(m).`
Then `x-a_(i)lt0" for "i=m,m+1,…,n`
and `x-a_(i)lt0" for "i=1,2,…,m-1`
and `A_(i)=(x-a_(i))/(-(x-a_(i)))=-1 " for "i=m,m+1,...,n`
and `A_(i)=(x-a_(i))/(x-a_(i))=1 " for "i=1,2,...,m-1`
Similarly, if x is in the right neighborhood of `a_(m)`, then `x=a_(i)lt0" for "i=m+1,...,n," and "x-a_(i)lt0" for "i=1,2,...,m.`
Therefore,
`A_(i)=(x-a_(i ))/(-(x-a_(i)))=-1" for "i=m+1,...,n`
and `A_(i)=(x-a_(i))/(x-a_(i))=1" for "i=1,2,...,m`
Now, Now, `underset(xtoa_(m)^(-))lim(A_(1)A_(2)...A_(n))=(-1)^(n-m+1)`
and `underset(xtoa_(m)^(+))lim(A_(1)A_(2)...A_(n))=(-1)^(n-m)`
Hence, `underset(xtoa_(m))lim(A_(1)A_(2)...A_(n))` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n). If 1lemlen,minN, then the value of L=lim_(xtoa_(m)) (A_(1)A_(2)...A_(n)) is

A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n). If 1lemlen,minN, then lim_(xtoa_(m)) (A_(1)A_(2)...A_(n))

Prove that function y=(x-a_(1))^(2)+(x-a_(2))^(2)+...+(x-a_(n))^(2) is minimum when x=(1)/(n)(a_(1)+a_(2)+...+a_(n)) .

If A_(1), A_(2),..,A_(n) are any n events, then

a_(1), a_(2),a_(3) in R - {0} and a_(1)+ a_(2)cos2x+ a_(3)sin^(2)x=0 " for all " x in R then

Equation x^(n)-1=0, ngt1, n in N," has roots "1,a_(1),a_(2),…,a_(n-1). The value of overset(n-1)underset(r=1)sum(1)/(2-a_(r)) is

Statement - I: vec(a)=3hat(i)+phat(j)+3hat(k) " and " vec(b)=2hat(i)+3hat(j)+qhat(k) are parallel vectors if p=9/2 " and " q=2 Statement - II: If vec(a)=a_(1)hat(i)+a_(2)hat(j)+a_(3)hat(k) " and " vec(b)=b_(1)hat(i)+b_(2)hat(j)+b_(3)hat(k) are parallel, then a_(1)/b_(1)=a_(2)/b_(2)=a_(3)/b_(3) .

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If p(x)=a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+.....+a_(n-1)x+a_(n)," prove that " underset(xrarra)"lim" p(x)=p(a) .

If a_(1)=1 and a_(n+1)=(4+3a_(n))/(3+2a_(n)),nge1"and if" lim_(ntooo) a_(n)=a,"then find the value of a."

CENGAGE PUBLICATION-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |