Home
Class 12
MATHS
Let f :RtoR be a positive, increasing fu...

Let `f :RtoR` be a positive, increasing function with
`lim_(xtooo) (f(3x))/(f(x))=1`. Then `lim_(xtooo) (f(2x))/(f(x))` is equal to

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)` is a positive increasing function. Therefore,
`0ltf(x)ltf(2x)ltf(3x)`
`implies" "0lt1lt(f(2x))/(f(x))lt(f(3x))/(f(x))`
`implies" "underset(xtooo)lim1ltunderset(xtooo)lim(f(2x))/(f(x))ltunderset(xtooo)lim(f(3x))/(f(x))" "(becauseunderset(xtooo)lim(f(3x))/(f(x))=1)`
By Sandwich theorem, we get
`underset(xtooo)lim(f(2x))/(f(x))=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtooo) (sinx)/(x).

lim_(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

Evaluate lim_(xtooo) (log_(e)x)/(x)

Let f(2) =4and f '(2) =4, then lim _(xto2)(x f(2) -2f(x))/(x-2) is equal to-

Evaluate lim_(xtooo)(1+2/x)^(x)

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

If f(9)=9 and f'(9)=4 then lim_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to -

If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -

lim_(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

Among (i) lim_(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim_(xtooo) sec^(-1)((sinx)/(x)).