Home
Class 12
MATHS
lim(x rarr 2)(sqrt(1-cos{2(x-2)})/(x-2))...

`lim_(x rarr 2)(sqrt(1-cos{2(x-2)})/(x-2))` =?

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(xto2)lim((sqrt(1-cos2(x-2)))/(x-2))=underset(xto2)lim(sqrt(2)|sin(x-2)|)/(x-2)`
Now, `underset(xto2^(+))lim(sqrt(2)|sin(x-2)|)/(x-2)=underset(xto2^(+))lim(sqrt(2)sin(x-2))/(x-2)=sqrt(2)`
and `underset(xto2^(-))lim(sqrt(2)|sin(x-2)|)/(x-2)=underset(xto2^(-))lim(-sqrt(2)sin(x-2))/((x-2))=-sqrt(2)`
Hence, limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xrarr1)(sqrt(1-cos2(x-1)))/(x-1)

The value of lim_(xrarroo) x^(2)(1-cos.(2)/(x)) is

Prove that lim_(x rarr 2) log(2x-3)/(2(x-2))=1

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

lim_(x to 2)(x-sqrt(3x-2))/(x^2-4)

Evaluate the following limits : lim_(x rarr 0) (1-cosx)/((e^(x^2)-1))

lim_(xrarr0)sqrt(1-cos2x)/(sqrt2x) is equal to

Evaluate the following limits: lim_(x rarr 0)(xe^(x)-log(1+x))/(x^(2))

lim_(x rarr 0) (sin(pi sin^2 x))/x^2=

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is