Home
Class 12
MATHS
lim(xrarr0)((1-cos2)(3+cos x))/(xtan 4x)...

`lim_(xrarr0)((1-cos2)(3+cos x))/(xtan 4x)` is equal to

Text Solution

Verified by Experts

The correct Answer is:
D

`underset(xto0)lim((1-cos2x)(3+cosx))/(xtan4x)=underset(xto0)lim((2sin^(2)x)(3+cosx))/(x((tan4x)/(4x))xx4x)`
`=underset(xto0)lim (2sin^(2)x(3+cosx))/(4x^(4))`
`=(2)/(4)(3+1)=2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

underset(x rarr 0)lim ((1-cos 2x) (3+cos x))/(x tan 4x) is equal to -

underset(xto0)lim((1-cos2x)(3+cosx))/(xtan4x) is equal to

underset(x to 0)lim((1-cos2x)(3+cosx))/(xtan4x) is equal to-

lim_(xrarr0)[(In cosx)/((1+x^2)^(1/4)-1))] is equal to

lim_(xrarr0)sqrt(1-cos2x)/(sqrt2x) is equal to

If underset(xrarr0)"lim" (1-cos4x)/(1-cos6x)=(4)/(K) then K is equal to -

If lim_(xrarr0)(2asinx-sin2x)/tan^3x exists and is equal to 1, then thee value of a is

Let f(x) be a polynomial of degree four having extreme values at x=1 and x=2. lim_(xrarr0)[1+f(x)/x^2]=3 ,then f(2) is equal to:

The value of lim_(xrarr0)(int_0^(x^2) cos(t^2)dt)/(xsinx) is

Evlauate lim_(xrarr0)(cot2x-cosec2x)/x