Home
Class 12
MATHS
underset(xto0)lim((1-cos2x)(3+cosx))/(xt...

`underset(xto0)lim((1-cos2x)(3+cosx))/(xtan4x)` is equal to

Text Solution

Verified by Experts

The correct Answer is:
C

`underset(xto0)lim((1-cos2x)(3+cosx))/(xtan4x)=underset(xto0)lim((2sin^(2)x)(3+cosx))/(x((tan4x)/(4x))xx4x)`
`=underset(xto0)lim(2sin^(2)x(3+cosx))/(4x^(2))`
`=(2)/(4)(3+1)=2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

underset(x to 0)lim((1-cos2x)(3+cosx))/(xtan4x) is equal to-

lim_(xrarr0)((1-cos2)(3+cos x))/(xtan 4x) is equal to

underset(x rarr 0)lim ((1-cos 2x) (3+cos x))/(x tan 4x) is equal to -

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim _(xto0) (1-cos mx)/(1-cos nx) is equal to-

underset(xrarr0)"lim"(sinx(1-cosx))/(x^(3))

Evaluate underset(xto0)lim(e^(x)-e^(xcosx))/(x+sinx).

If underset(xrarr0)"lim" (1-cos4x)/(1-cos6x)=(4)/(K) then K is equal to -

lim_(x->0) (Cosx -1)/x is equal to

int(In(1+cosx)-xtan(x/2))dx is equal to