Home
Class 12
MATHS
The lim(xto(pi)/2)(cot x-cosx)/((pi-2x)^...

The `lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3))` equals

Text Solution

Verified by Experts

The correct Answer is:
C

`underset(xto(pi)/(2))lim(cotx-cosx)/((pi-2x)^(3))=underset(xto(pi)/(2))lim(cotx(1-sinx))/(8((pi)/(2)-x))`
`=(1)/(8)underset(xto(pi)/(2))lim(tan((pi)/(2)-x))/(((pi)/(2)-x)).((1-sin^(2)x))/(((pi)/(2)-x)^(2)).(1)/(1+sinx)`
`=(1)/(8)underset(xto(pi)/(2))lim(tan((pi)/(2)-x))/(((pi)/(2)-x)).(cos^(2)x)/(((pi)/(2)-x)^(2)).(1)/(1+sinx)`
`=(1)/(8)underset(xto(pi)/(2))lim(tan((pi)/(2)-x))/(((pi)/(2)-x)).(sin^(2)((pi)/(2)-x))/(((pi)/(2)-x)^(2)).(1)/(1+sinx)`
`=(1)/(8).1.1.(1)/(2)=(1)/(16)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xto(pi)/(2))(cos3x+3cosx)/(((pi)/(2)-x)^(3))

The value of lim_(xto(pi)/(4))(sinx-cosx)/(x-(pi)/(4)) is

Evaluate: lim_(x->pi/2)(1+cos2x)/((pi-2x)^2)

Evaluate : lim_(xto(pi)/(6))(sqrt3sinx-cosx)/((x-(pi)/(6)))

Evaluate lim_(xto(pi)/(6)) (2-sqrt(3)cosx-sinx)/((6x-pi)^(2)).

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

Evaluate: lim_(xto(pi)/(2))((2xsecx)/(pi)-tanx)

Evaluate: lim_(x->pi/2)(cosx)^(cosx)

Show that : lim_(xto(pi)/(4))(sqrt2-(sinx+cosx))/((4x-pi)^(2))=(1)/(16sqrt2)

lim_(x to pi/2)sin(xcosx)/("cos"(xsinx)) is equal to (a) 0 (b) pi/2 (c) pi (d) 2pi