Home
Class 12
MATHS
For each tinR," let "[t] be the greatest...

For each `tinR," let "[t]` be the greatest integer less than or equal to t. Then find `lim_(xto0^(+)) x([(1)/(x)]+[(2)/(x)]+...+[(15)/(x)])`

Text Solution

Verified by Experts

The correct Answer is:
D

`underset(xto0^(+))lim([(1)/(x)]+[(2)/(x)]+...+[(15)/(x)])`
`=underset(xto0^(+))lim(((1)/(x)+(2)/(x)+(3)/(x)+...+(15)/(x))-({(1)/(x)}+{(2)/(x)}+...+{(15)/(x)}))`
(Where `{k}` represents fractional part of k)
`=underset(xto0^(+))lim(x(120)/(x)-x({(1)/(x)}+{(2)/(x)}+...+{(15)/(x)}))`
`=120-0" "(because0lt{k}lt1)`
`=120`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If a and b are positive and [x] denotes greatest integer less than or equal to x, then find lim_(xto0^(+)) x/a[(b)/(x)].

For each t in R ,let[t]be the greatest integer less than or equal to t. Then lim_(xto1^+)((1-absx+sinabs(1-x))sin(pi/2[1-x]))/(abs(1-x)[1-x])

For each x in R , let [x]be the greatest integer less than or equal to x. Then lim_(xto0^-) (x([x]+absx)sin[x])/absx is equal to a) -sin1 b) 0 c) 1 d) sin 1

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs(x)-sin(x[x]))^2)/x^2

if [x] denotes the greatest integer less than or equal to x then integral int_0^2x^2[x] dx equals

lim_(xto0+)(e^x+x)^((1)/(x))

If f(x)={:(sin[x]","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(2)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).