Home
Class 12
MATHS
Prove that the product of the lengths of...

Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2-b^2),0)`and `(-sqrt(a^2-b^2),0)`to the line `x/a``costheta``+``y/b``sintheta=1`is `b^2`.

Text Solution

Verified by Experts

The equation of the given line is
`(x)/(a)"cos" theta + (y)/(b) "sin" theta = 1`
`" or " bx "cos" theta + ay " sin " theta-ab = 0" " (1)`
`" The length of the perpendicular from the point" (sqrt(a^(2)-b^(2)),0) "to line" (1) " is "`
`p_(1) = (|b "cos" theta sqrt(a^(2)-b^(2)) + a "sin" theta (0)-ab|)/(sqrt(b^(2) "cos"^(2) theta +a^(2) "sin"^(2) theta))`
`=(|b "cos" theta sqrt(a^(2) -b^(2))-ab|)/(sqrt(b^(2) cos^(2) theta +a ^(2) "sin"^(2) theta)) " " (2)`
`"The length of the perpendicular from the point" (-sqrt(a^(2)-b^(2)),0) " to line (I) is "`
`p_(2) = (|b "cos" theta (-sqrt(a^(2)-b^(2))) + a "sin" theta (0)-ab|)/(sqrt(b^(2) "cos"^(2) theta +a^(2) "sin"^(2) theta))`
`= (|b"cos" theta sqrt(a^(2)-b^(2)) +ab|)/(sqrt(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)) " " (3)`
`therefore p_(1) p_(2) = (|b"cos" theta sqrt(a^(2)-b^(2)) -ab||b "cos" theta sqrt(a^(2)-b^(2)) +ab|)/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)`
`=(|b^(2)"cos"^(2) theta (a^(2)-b^(2)) -a^(2)b^(2)|)/((b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta))`
`=(|a^(2)b^(2)"cos"^(2) theta-b^(4) "cos"^(2)theta-a^(2)b^(2)|)/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)`
`=(b^(2)|a^(2)"cos"^(2) theta-b^(2) "cos"^(2)theta-a^(2)|)/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)`
`=(b^(2)|-b^(2)"cos"^(2) theta-a^(2)(1- "cos"^(2)theta)|)/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)`
`=(b^(2)(b^(2)"cos"^(2) theta + a^(2)"sin"^(2)theta))/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta) =b^(2)`
Hence, proved.
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise EXAMPLE|12 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.1|23 Videos
  • STRAIGHT LINE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise JEE ADVANCED (Numerical Value Type )|1 Videos

Similar Questions

Explore conceptually related problems

Prove that the product of the lengths of the perpendiculars drawn from the points (sqrt(a^(2) - b^(2)) , 0) " and " (- sqrt(a^(2) - b^(2)), 0) to the line x/a cos theta + y/b sin theta = 1 " is " b^(2) .

Show that the product of the perpendiculars drawn from the two points (+-sqrt(a^(2)-b^(2)),0) upon the straight line (x)/(a)costheta+(y)/(b)sintheta=1 is b^(2)

find the length of the perpendicular drawn from the point (2,1,-1) on the line x - 2y + 4z = 9

Find the product of the length of perpendiculars drawn from any point on the hyperbola x^2-2y^2-2=0 to its asymptotes.

The locus of point of intersection of the lines y+mx=sqrt(a^2m^2+b^2) and my-x=sqrt(a^2+b^2m^2) is

prove that the product of the perpendiculars drawn from the point (x_1, y_1) to the pair of straight lines ax^2+2hxy+by^2=0 is |(ax_1^2+2hx_1y_1+by_1^2)/sqrt((a-b)^2+4h^2)|

The product of the perpendiculars from origin to the pair of lines a x^2+2h x y+b y^2 + 2gx + 2fy + c =0 is

if P is the length of perpendicular from origin to the line x/a+y/b=1 then prove that 1/(a^2)+1/(b^2)=1/(p^2)

If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then the value of C is

Show that the equation of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point (asqrt(2),b) is ax+b sqrt(2)=(a^2+b^2)sqrt(2) .