Home
Class 12
MATHS
If p and q are the lengths of the perpen...

If p and q are the lengths of the perpendiculars from the origin to the straight lines `x "sec" alpha + y " cosec" alpha = a " and " x "cos" alpha-y " sin" alpha = `
a `"cos" 2alpha, " then prove that 4p^(2) + q^(2) = a^(2).`

Text Solution

Verified by Experts

`"Here," P = |(-k)/(sqrt("sec"^(2)alpha + "cosec"^(2)alpha))|, p' = |(-k"cos" 2alpha)/(sqrt("cos"^(2)alpha + "sin"^(2)alpha))|`
`"Here," 4p^(2) + p'^(2) = (4k^(2))/("sec"^(2)alpha + "cosec"^(2)alpha), + (k^(2)("cos"^(2)alpha- "sin"^(2)alpha)^(2))/(1)`
`= 4k^(2)"sec"^(2)"cos"^(2)alpha + k^(2)("cos"^(4)alpha+"sin"^(4)alpha)-2k^(2)"cos"^(2)alpha xx "sin"^(2)alpha`
`=k^(2)("sin"^(2)alpha+"cos"^(2)alpha)^(2) = k^(2)`
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.4|8 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.5|8 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.2|4 Videos
  • STRAIGHT LINE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise JEE ADVANCED (Numerical Value Type )|1 Videos

Similar Questions

Explore conceptually related problems

If p and q are the lengths of perpendiculars from the origin to the lines x cos theta - y sin theta = k cos 2 theta " and " x sec theta + y cosec theta = k , respectively, prove that p^(2) + 4q^(2) = k^(2) .

Find the area of the triangle formed by the straight line x sin alpha + y cos alpha = p with the axes of coordinates .

Show that the locus of the point of intersection of the lines x cos alpha + y sin alpha = a and x sin alpha - y cos alpha = a , when alpha varies, is a circle.

If sin alpha + cos alpha = sqrt2 cos alpha,"show that",tan 2 alpha = 1

If sec alpha and cosec alpha are the roots of x^2-px+q=0 then prove that p^2=q(q+2)

Show that the image of the point (h,k) with respect to the striaight line x cos alpha+ y sin alpha=p is the point (2 p cos alpha- h cos2 alpha- k sin 2 alpha, 2p sin alpha- h sin 2 alpha- k cos 2 alpha) .

Prove : int ( cos 2x - cos 2 alpha )/(cos x - cos alpha ) dx = 2(x cos alpha + sin x) +c

The lines x cos alpha + y sin alpha = p_1 and x cos beta + y sin beta = p_2 will be perpendicular, if :

If the straight line y= x sin alpha + a sec alpha is a tangent to the circle x^(2) + y^(2) = a^(2) then-