Home
Class 12
MATHS
If A=[(a,b),(c,d)], where a, b, c and d ...

If `A=[(a,b),(c,d)]`, where a, b, c and d are real numbers, then prove that `A^(2)-(a+d)A+(ad-bc) I=O`. Hence or therwise, prove that if `A^(3)=O` then `A^(2)=O`

Text Solution

Verified by Experts

Given, `A=[(a,b),(c,d)]`
`implies A^(2)=[(a,b),(c,d)].[(a,b),(c,d)]=[(a^(2)+bc,ab+bd),(ac+cd,bc+d^(2))]`
Hence, `A^(2)-(a+d)A+(ad-bc) I`
`=[(a^(2)+bc,ab+bd),(ac+cd,bc+d^(2))]-(a+d) [(a,b),(c,d)]+(ad-bc) [(1,0),(0,1)]`
`=[(a^(2)+bc-(a^(2)+ad)+(ad-bc),ab+bd-(ab+bd)),(ac+cd-(ac+cd),bc+d^(2)-(ad+d^(2))+(ad-bc))]`
`=[(0,0),(0,0)]=O`
given `A^(3)=O`
`implies |A|=0` or `ad-bc=0`
`implies A^(2)-(a+d)A=O`
or `A^(2)=(a+d)A` (1)
Case I : `a+d=0`
From equation (A), `A^(2)=O`.
Case II : `a+d ne 0`
Given `A^(3)=O`
`implies A^(2)A=O`
`implies (a+d)A A=O`
`implies A^(2)=O`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d are in GP then prove thst (b+c)(b+d) =(c+a)(c+d)

If a , b ,c are three distinct positive real numbers in G.P., then prove that c^2+2a b >3ac

If a, b, c, d are in A.P. and a, b, c, d are in G.P., show that a^(2) - d^(2) = 3(b^(2) - ad) .

If A^(3)=O , then prove that (I-A)^(-1) =I+A+A^(2) .

Let A be a matrix of order 2xx2 such that A^(2)=O . A^(2)-(a+d)A+(ad-bc)I is equal to

If a+c = 2b and 2/c= 1/b+1/d then prove that a:b = c:d.

If a,b,c,d are in GP then prove that, (a^2-b^2), (b^2-c^2), (c^2-d^2) are in GP.

If a, b, c, d are in continued proportion, then prove that (b -c)^(2) + (c -a)^(2) + (b-d)^(2) = (a -d)^(2)

If (a + b + c + d) (a - b - c + d) = (a + b - c - d) (a - b + c - d) , then prove that a : b = c : d

If a,b,c ,d and p are distinct real number such that (a^2+b^2+c^2)p^2-2(ab+bc+cd)p+(b^2+c^2+d^2)le0 then a,b,c,d are in

CENGAGE PUBLICATION-MATRICES-All Questions
  1. If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),...

    Text Solution

    |

  2. Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),...

    Text Solution

    |

  3. If A=[(a,b),(c,d)], where a, b, c and d are real numbers, then prove t...

    Text Solution

    |

  4. If A=([a(i j)])(nxxn) is such that ( a )(i j)=bar (a(j i)),AAi ,j and...

    Text Solution

    |

  5. Find the possible square roots of the two rowed unit matrix I.

    Text Solution

    |

  6. Prove the orthogonal matrices of order two are of the form [(cos theta...

    Text Solution

    |

  7. Let A=[("tan"pi/3,"sec" (2pi)/3),(cot (2013 pi/3),cos (2012 pi))] and ...

    Text Solution

    |

  8. Consider, A=[(a,2,1),(0,b,0),(0,-3,c)], where a, b and c are the roots...

    Text Solution

    |

  9. If A and B are square matrices of order 3 such that |A| = 3 and |B| = ...

    Text Solution

    |

  10. If a matrix has 28 elements, what are the possible orders it can have ...

    Text Solution

    |

  11. Construct a 2xx2 matrix, where (i) a("ij")=((i-2j)^(2))/(2) (ii) a("...

    Text Solution

    |

  12. What is the maximum number of different elements required to form a sy...

    Text Solution

    |

  13. If a square matix a of order three is defined A=[a("ij")] where a("ij"...

    Text Solution

    |

  14. For what values of x and y are the following matrices equal ? A=[(2x...

    Text Solution

    |

  15. For alpha, beta, gamma in R, let A=[(alpha^(2),6,8),(3,beta^(2),9),(...

    Text Solution

    |

  16. Find the values of x for which matrix [(3,-1+x,2),(3,-1,x+2),(x+3,-1,2...

    Text Solution

    |

  17. If A=[(1,2),(3,4),(5,6)] and B=[(-3,-2),(1,-5),(4,3)], then find D=[(p...

    Text Solution

    |

  18. A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I, find t...

    Text Solution

    |

  19. Let A be a square matrix. Then prove that (i) A + A^T is a symmetric m...

    Text Solution

    |

  20. If A=[(2,-1),(3,1)] and B=[(1,4),(7,2)] , find 3A-2B.

    Text Solution

    |