Home
Class 12
MATHS
Let A=[(2,1),(0,3)] be a matrix. If A^(1...

Let `A=[(2,1),(0,3)]` be a matrix. If `A^(10)=[(a,b),(c,d)]` then prove that `a+d` is divisible by 13.

Text Solution

Verified by Experts

We have
`A^(2)=[(2,1),(0,3)][(2,1),(0,3)]=[(4,5),(0,9)]`
`A^(3)=A^(2)A=[(4,5),(0,9)][(2,1),(0,3)]=[(8,19),(0,27)]`
`implies A^(n) =[(2^(n),3^(n)-2^(n)),(0, 3^(n))]`
Now `A^(10)=[(a,b),(c,d)]`
`implies a=2^(10), d=3^(10)`
So, `a+b=2^(10)+3^(10)=4^(5)+9^(5)`, which is multiple of 13.
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

If the points (a, 0), (b,0), (0, c) , and (0, d) are concyclic (a, b, c, d > 0) , then prove that ab = cd .

If a+c = 2b and 2/c= 1/b+1/d then prove that a:b = c:d.

If (a+b)/(b+c) = (c+d)/(d+a) then prove that either c= a or a+b+c+d = 0.

If the matrix [(a,b),(c,d)] is commutative with the matrix [(1,1),(0,1)] then

If A={:[(a,b),(c,d)] and I={:[(1,0),(0,1)] Show that, A^(2)-(a+d)A=(bc-ad)I .

The inverse of the matrix [(1, 0,0),(a,1,0),(b,c,1)] is -

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O

If a,b,c,d are in GP then prove thst (b+c)(b+d) =(c+a)(c+d)

If b^2<2a c , then prove that a x^3+b x^2+c x+d=0 has exactly one real root.

CENGAGE PUBLICATION-MATRICES-All Questions
  1. If A =[[costheta,sintheta],[-sintheta,costheta]] then prove that A^n=[...

    Text Solution

    |

  2. If A=((p,q),(0,1)), then show that A^(8)=((p^(8),q((p^(8)-1)/(p-1))),(...

    Text Solution

    |

  3. Let A=[(2,1),(0,3)] be a matrix. If A^(10)=[(a,b),(c,d)] then prove th...

    Text Solution

    |

  4. Show that the solutions of the equation [(x,y),(z,t)]^2=0 are[(x,y),(...

    Text Solution

    |

  5. Let A be square matrix. Then prove that A A^(T) and A^(T) A are symmet...

    Text Solution

    |

  6. If A, B are square materices of same order and B is a skewsymmetric ma...

    Text Solution

    |

  7. If A and B are square matrices of same order such that AB+BA=O, then p...

    Text Solution

    |

  8. Let A=[(1,2),(-1,3)] .If A^6=kA-205I then find the numerical quantit...

    Text Solution

    |

  9. Let A, B, C, D be (not necessarily square) real matrices such that A^T...

    Text Solution

    |

  10. If A and B are square matrices of the same order such that A B = B A,...

    Text Solution

    |

  11. If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC m...

    Text Solution

    |

  12. If A=[(3,-4),(1,-1)] then find tr. (A^(2012)).

    Text Solution

    |

  13. If A is a nonsingular matrix satisfying AB-BA=A, then prove that det. ...

    Text Solution

    |

  14. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  15. Given a matrix A=[(a,b,c), (b,c,a), (c,a,b)],where a ,b ,c are real po...

    Text Solution

    |

  16. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  17. Consider point P(x, y) in first quadrant. Its reflection about x-axis ...

    Text Solution

    |

  18. If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix ...

    Text Solution

    |

  19. If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

    Text Solution

    |

  20. The matrix A=[-5-8 0 3 5 0 1 2-] is a. idempotent matrix b. involut...

    Text Solution

    |