Home
Class 12
MATHS
Let A=[(1,2),(-1,3)] .If A^6=kA-205I t...

Let `A=[(1,2),(-1,3)]` .If `A^6=kA-205I` then find the numerical quantity of `k-40`

Text Solution

Verified by Experts

`A=[(1,2),(-1,3)]`
`implies A^(2)=[(1,2),(-1,3)][(1,2),(-1,3)]=[(-1,8),(-4,7)]=4A-5I`
`implies A^(3)=A A^(2)=A(4A-5I)`
`=4A^(2)-5A`
`=4(4A-5I)-5A`
`=11 A-20 I`
`A^(6)=A^(3) A^(3)=(11A-20I)^(2)`
`=121A^(2)-440 A+400 I`
`=121 (4A-5I)-440 A+400 I`
`=44A-205 I`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Let A = [(2,8),(1,1)] , find A^(-1) .

If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

If u_n=cos^ntheta+sin^ntheta then 2u_6-ku_4+1=0 then the numerical quantity k must be equal to

If A = [(3+2i, i),(-i,3-2i)] then find A^-1

If k, 2(k+1), 3(k+1) are in GP, Then find the value of k.

If A={:[(3,-2),(4,-2)], find k such that A^(2)=kA-2I_(2)

Let A ={:[(2,0,1),(2,1,3),(1,-1,0)] and f(x) = x^(2) -5x + 6 , find f(A).

If A={:[(1,0),(-1,7)] and I={:[(1,0),(0,1)] , then find k so that A^(2)=8A+kI

Matrices a and B satisfy AB=B^(-1) , where B=[(2,-1),(2,0)] . Find (i) without finding B^(-1) , the value of K for which KA-2B^(-1)+I=O . (ii) without finding A^(-1) , find the matrix X satifying A^(-1) XA=B .

Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

CENGAGE PUBLICATION-MATRICES-All Questions
  1. If A, B are square materices of same order and B is a skewsymmetric ma...

    Text Solution

    |

  2. If A and B are square matrices of same order such that AB+BA=O, then p...

    Text Solution

    |

  3. Let A=[(1,2),(-1,3)] .If A^6=kA-205I then find the numerical quantit...

    Text Solution

    |

  4. Let A, B, C, D be (not necessarily square) real matrices such that A^T...

    Text Solution

    |

  5. If A and B are square matrices of the same order such that A B = B A,...

    Text Solution

    |

  6. If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC m...

    Text Solution

    |

  7. If A=[(3,-4),(1,-1)] then find tr. (A^(2012)).

    Text Solution

    |

  8. If A is a nonsingular matrix satisfying AB-BA=A, then prove that det. ...

    Text Solution

    |

  9. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  10. Given a matrix A=[(a,b,c), (b,c,a), (c,a,b)],where a ,b ,c are real po...

    Text Solution

    |

  11. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  12. Consider point P(x, y) in first quadrant. Its reflection about x-axis ...

    Text Solution

    |

  13. If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix ...

    Text Solution

    |

  14. If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

    Text Solution

    |

  15. The matrix A=[-5-8 0 3 5 0 1 2-] is a. idempotent matrix b. involut...

    Text Solution

    |

  16. If abc=p and A=[(a,b,c),(c,a,b),(b,c,a)], prove that A is orthogonal i...

    Text Solution

    |

  17. Let A be an orthogonal matrix, and B is a matrix such that AB=BA, then...

    Text Solution

    |

  18. Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)].

    Text Solution

    |

  19. If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(...

    Text Solution

    |

  20. If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], t...

    Text Solution

    |