Home
Class 12
MATHS
If A is a nonsingular matrix satisfying ...

If A is a nonsingular matrix satisfying `AB-BA=A`, then prove that det. `(B+I)=` det, `(B-I)`.

Text Solution

Verified by Experts

A is nonsingular det `A ne 0`
Given `AB-BA=A`
Hence `AB=A+BA=A(I+B)`
`implies" dte. "A." det." B=" det." A." det." (I+B)`
or det. B = det. (I+B) (as A is nonsingular) (1)
Again `AB-A=BA`
or `A(B-I)=BA`
or (det. A). Det. (B-I) = det. B. det. A
or det. `(B-I)=` dte. (B) (2)
From (1) and (2), dte. `(B-I)=` det. `(B+I)`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A and B are non-singular symmetric matrices such that AB=BA , then prove that A^(-1) B^(-1) is symmetric matrix.

If A, B are two square matrices such that AB = A and BA = B, then prove that B^(2) = B

If A is a non-singular matrix of order 3 and x is a real number such that det(xA)=abs(x)det(A) then the value of x is-

If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsingular and C=(A+B)^(-1) (A-B) , then prove that (i) C^(T) (A+B) C=A+B (ii) C^(T) (A-B)C=A-B (iii) C^(T)AC=A

If A and B are square matrices such that AB = BA then prove that A^(3)-B^(3)=(A-B) (A^(2)+AB+B^(2)) .

If A and B are square matrices of same order such that AB+BA=O , then prove that A^(3)-B^(3)=(A+B) (A^(2)-AB-B^(2)) .

If one of the eigenvalues of a square matrix a order 3xx3 is zero, then prove that det A=0 .

Let A be any 3xx2 matrix. Then prove that det. (A A^(T))=0 .

A and B are square matrices and A is non-singular matrix, then (A^(-1) BA)^n,n in I' ,is equal to (A) A^-nB^nA^n (B) A^nB^nA^-n (C) A^-1B^nA (D) A^-nBA^n

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to

CENGAGE PUBLICATION-MATRICES-All Questions
  1. If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC m...

    Text Solution

    |

  2. If A=[(3,-4),(1,-1)] then find tr. (A^(2012)).

    Text Solution

    |

  3. If A is a nonsingular matrix satisfying AB-BA=A, then prove that det. ...

    Text Solution

    |

  4. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  5. Given a matrix A=[(a,b,c), (b,c,a), (c,a,b)],where a ,b ,c are real po...

    Text Solution

    |

  6. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  7. Consider point P(x, y) in first quadrant. Its reflection about x-axis ...

    Text Solution

    |

  8. If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix ...

    Text Solution

    |

  9. If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

    Text Solution

    |

  10. The matrix A=[-5-8 0 3 5 0 1 2-] is a. idempotent matrix b. involut...

    Text Solution

    |

  11. If abc=p and A=[(a,b,c),(c,a,b),(b,c,a)], prove that A is orthogonal i...

    Text Solution

    |

  12. Let A be an orthogonal matrix, and B is a matrix such that AB=BA, then...

    Text Solution

    |

  13. Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)].

    Text Solution

    |

  14. If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(...

    Text Solution

    |

  15. If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], t...

    Text Solution

    |

  16. Let A be a square matrix of order 3 such that adj. (adj. (adj. A)) =...

    Text Solution

    |

  17. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  18. Matrices a and B satisfy AB=B^(-1), where B=[(2,-1),(2,0)]. Find (i...

    Text Solution

    |

  19. Given the matrices A and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)]....

    Text Solution

    |

  20. If M is the matrix [(1,-3),(-1,1)] then find matrix sum(r=0)^(oo) ((-1...

    Text Solution

    |