Home
Class 12
MATHS
If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1...

If `S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)]` and `P=S ("adj.A") S^(T)`, then find matrix `S^(T) P^(10) S`.

Text Solution

Verified by Experts

`S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2 sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))]`
`=[("sin "15^(@),cos 15^(@)),(-"cos "15^(@),sin 15^(@))]`
`:. SS^(T)=S^(T)S=I`
Now,
`S^(T) P^(10) S=S^(T)(S ("adj. A")S^(T))^(10)S`
`=S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(9)S`
`=I ("adj. A")S^(T) (S("adj. A")S^(T))^(9)S`
`=("adj. A")S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(8) S`
`=("adj. A")^(2)S^(T) (S("adj. A")S^(T))^(8)S`
...
...
`=("adj. A")^(10)`
`A=[(1,0),(-1,1)]`
`:.` adj. `A=[(1,0),(1,1)]`
`:. ("adj. A")^(2)=[(1,0),(1,1)][(1,0),(1,1)]=[(1,0),(2,1)]`
`:. ("adj. A")^(3)=[(1,0),(3,1)]`
And so on.
`:. ("adj. A")^(10)=[(1,0),(10,1)]=S^(T) P^(10) S`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Simplify : 1/(sqrt2+sqrt3)-(sqrt3+1)/(2+sqrt3)+(sqrt2+1)/(3+2sqrt2)

int_(1)^(2)(sqrt(x)dx)/(sqrt(x)+sqrt(3-x))=(1)/(2)

Let p=1+1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(120)) and q=1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(121)) then

Simplify: (sqrt2 (2 + sqrt3))/(sqrt3 (sqrt3 + 1)) - (sqrt2 (2 - sqrt3))/(sqrt3 (sqrt3 -1))

int (dx)/(sqrt(1+sqrt(x)))=(4)/(3)(sqrt(x)-2)sqrt(1+sqrt(x))+c

Simplify: 1/sqrt(11-2sqrt(30))-3/(sqrt7-2sqrt(10))-4/(sqrt(8+4sqrt3))

Simplify : (3sqrt(-1)+sqrt(-2))div(2-sqrt(-4))

4 cos^(2)x + sqrt(3) = 2(sqrt(3)+1)

Evaluate: lim_(xto2)(sqrt(1+sqrt(2+x))-sqrt3)/(x-2)

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Let A be an orthogonal matrix, and B is a matrix such that AB=BA, then...

    Text Solution

    |

  2. Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)].

    Text Solution

    |

  3. If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(...

    Text Solution

    |

  4. If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], t...

    Text Solution

    |

  5. Let A be a square matrix of order 3 such that adj. (adj. (adj. A)) =...

    Text Solution

    |

  6. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  7. Matrices a and B satisfy AB=B^(-1), where B=[(2,-1),(2,0)]. Find (i...

    Text Solution

    |

  8. Given the matrices A and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)]....

    Text Solution

    |

  9. If M is the matrix [(1,-3),(-1,1)] then find matrix sum(r=0)^(oo) ((-1...

    Text Solution

    |

  10. Let p be a non singular matrix, and I + P + p^2 + ... + p^n = 0, then ...

    Text Solution

    |

  11. If A and B are square matrices of same order such that AB=O and B ne O...

    Text Solution

    |

  12. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  13. If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)...

    Text Solution

    |

  14. If matrix a satisfies the equation A^(2)=A^(-1), then prove that A^(2^...

    Text Solution

    |

  15. If A and B are non-singular symmetric matrices such that AB=BA, then p...

    Text Solution

    |

  16. If A is a matrix of order n such that A^(T)A=I and X is any matrix suc...

    Text Solution

    |

  17. Show that two matrices A=[(1,-1,0),(2,1,1)] and B=[(3,0,1),(0,3,1)] ...

    Text Solution

    |

  18. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  19. Let A be a 3xx3 matric such that A . [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,...

    Text Solution

    |

  20. Solve the following system of equations, using matrix method. x+2y+z=7...

    Text Solution

    |