Home
Class 12
MATHS
If matrix a satisfies the equation A^(2)...

If matrix a satisfies the equation `A^(2)=A^(-1)`, then prove that `A^(2^(n))=A^(2^((n-2))), n in N`.

Text Solution

Verified by Experts

`A^(2^(n))=A^(2.2^(n-1))=(A^(2))^(2^(n-1))`
`=(A^(-1))^(2^(n-1))=(A^(2^(n-1)))^(-1)=(A^(2.2^(n-2)))^(-1)`
`=((A^(2))^(2^(n-2)))^(-1)=((A^(-1))^(-1))^(2^((n-2)))=A^(2^((n-2)))`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) n in N

For ninN , prove that ((n+1)/2)^ngt n!

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

Prove that (2n!)/(n!)={1.3.5.....(2n-1)}2^n

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

A square matrix P satisfies P^(2)=I-P , where I is identity matrix. If P^(n)=5I-8P , then n is :

Prove that [(n+1)//2]^n >(n !)dot

CENGAGE PUBLICATION-MATRICES-All Questions
  1. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  2. If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)...

    Text Solution

    |

  3. If matrix a satisfies the equation A^(2)=A^(-1), then prove that A^(2^...

    Text Solution

    |

  4. If A and B are non-singular symmetric matrices such that AB=BA, then p...

    Text Solution

    |

  5. If A is a matrix of order n such that A^(T)A=I and X is any matrix suc...

    Text Solution

    |

  6. Show that two matrices A=[(1,-1,0),(2,1,1)] and B=[(3,0,1),(0,3,1)] ...

    Text Solution

    |

  7. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  8. Let A be a 3xx3 matric such that A . [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,...

    Text Solution

    |

  9. Solve the following system of equations, using matrix method. x+2y+z=7...

    Text Solution

    |

  10. Using matrix method, show that following system of equation is inconsi...

    Text Solution

    |

  11. If f(x) and g(x) are two functions with g(x)=x−1/x and fog(x) =x^3−1/ ...

    Text Solution

    |

  12. Find the characteristic roots of the two-rowed orthogonal matrix [(cos...

    Text Solution

    |

  13. Show that if lambda(1), lambda(2), ...., lambda(n) are n eigenvalues o...

    Text Solution

    |

  14. If A is nonsingular, prove that the eigenvalues of A^(-1) are the reci...

    Text Solution

    |

  15. If one of the eigenvalues of a square matrix a order 3xx3 is zero, the...

    Text Solution

    |

  16. Construct a 3 xx 4 matrix, whose elements are given by: a(i j)=1/2|-3...

    Text Solution

    |

  17. Find the value of a if [a-b2a+c2a-b3c+d]=[-1 5 0 13]

    Text Solution

    |

  18. Find the number of all possible matrices of order 3xx3 with each entry...

    Text Solution

    |

  19. Find the value of x for which the matrix A=[(2//x,-1,2),(1,x,2x^(2)),(...

    Text Solution

    |

  20. If matric A is skew-symmetric matric of odd order, then show that tr. ...

    Text Solution

    |