Home
Class 12
MATHS
If one of the eigenvalues of a square ma...

If one of the eigenvalues of a square matrix a order `3xx3` is zero, then prove that det `A=0`.

Text Solution

Verified by Experts

Let `A=[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]`
`implies A-lambdaI=[(a_(1)-lambda,b_(1),c_(1)),(a_(2),b_(2)-lambda,c_(2)),(a_(3),b_(3),c_(3)-lambda)]`
`implies` det. `(A-lambdaI)=(a_(1)-lambda)[(b_(2)-lambda)(c_(3)-lambda)-b_(3)c_(2)]`
`-b_(1) [a_(2) (c_(3)-lambda)-c_(2)a_(3)]+c_(1)[a_(2)b_(3)-a_(3)(b_(2)-lambda)]`
Now if one of the eigenvalues is zero, one root of `lambda` should be zero. Therefore, constant term in the above polynominal is zero.
`implies a_(1) b_(2)c_(3)-a_(1)b_(3)c_(2)-b_(1)a_(2)c_(3)+b_(1)c_(2)a_(3)+a_(1)a_(2)a_(3)-c_(1)a_(3)b_(2)=0`
But in above equation L.H.S. is the value of determinant of A. Hence,
det. `A=0`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Let A be a square matrix of order 3xx3 , then |KA| is equal to

Show that if lambda_(1), lambda_(2), ...., lambda_(n) are n eigenvalues of a square matrix a of order n, then the eigenvalues of the matric A^(2) are lambda_(1)^(2), lambda_(2)^(2),..., lambda_(n)^(2) .

Let A be any 3xx2 matrix. Then prove that det. (A A^(T))=0 .

Let A be a nonsingular square matrix of order 3xx3 .Then |adj A| is equal to

If A is a square matrix of order 3 such that |A|=5 , then |Adj(4A)|=

Find co-factor of a_(31) for a matrix of order 3xx3

If one of the sides of a square is 3x-4y-12=0 and the center is (0,0) , then find the equations of the diagonals of the square.

If A is a square matrix of order 3xx3 and lambda is a scalar, then adj (lambdaA) is equal to -

Let A be a non singular square matarix of order 3 xx 3 . Then |adj A| is equal to

If one root of the equation ax^2+bx+c=0 is square the other root, then prove that b^3+ac^2+a^2c= 3abc .

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Show that if lambda(1), lambda(2), ...., lambda(n) are n eigenvalues o...

    Text Solution

    |

  2. If A is nonsingular, prove that the eigenvalues of A^(-1) are the reci...

    Text Solution

    |

  3. If one of the eigenvalues of a square matrix a order 3xx3 is zero, the...

    Text Solution

    |

  4. Construct a 3 xx 4 matrix, whose elements are given by: a(i j)=1/2|-3...

    Text Solution

    |

  5. Find the value of a if [a-b2a+c2a-b3c+d]=[-1 5 0 13]

    Text Solution

    |

  6. Find the number of all possible matrices of order 3xx3 with each entry...

    Text Solution

    |

  7. Find the value of x for which the matrix A=[(2//x,-1,2),(1,x,2x^(2)),(...

    Text Solution

    |

  8. If matric A is skew-symmetric matric of odd order, then show that tr. ...

    Text Solution

    |

  9. Solve for x and y , x[{:(2),(1):}]+y[{:(3),(5):}]+[{:(-8),(-11):}]=0.

    Text Solution

    |

  10. If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C ...

    Text Solution

    |

  11. Solve the following equations for X and Y : 2X-Y=[(3,-3,0),(3,3,2)],...

    Text Solution

    |

  12. If A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)] and C=[(-...

    Text Solution

    |

  13. If A=[(3,-2),(4,-1)], then find all the possible values of lambda such...

    Text Solution

    |

  14. If matrix A=[(0,1,-1),(4,-3,4),(3,-3,4)]=B+C, where B is symmetric mat...

    Text Solution

    |

  15. Consider the matrices A=[(4,6,-1),(3,0,2),(1,-2,5)], B=[(2,4),(0,1),...

    Text Solution

    |

  16. Let A=B B^(T)+C C^(T), where B=[(cos theta),(sin theta)], C=[(sin thet...

    Text Solution

    |

  17. if A=[[i,0] , [0,i]] where i=sqrt(-1) and x in N then A^(4x) equals to...

    Text Solution

    |

  18. If A = [[1,2],[3,-5]] and B=[[1,0],[0,2]] and X is a matrix such that ...

    Text Solution

    |

  19. Find the matrix X so that X[1 2 3 4 5 6]=[-7-8-9""""""2""""""4""""6]

    Text Solution

    |

  20. If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim(ntooo)1/nA^n ...

    Text Solution

    |