Home
Class 12
MATHS
A and B are different matrices of order ...

A and B are different matrices of order n satisfying `A^(3)=B^(3)` and `A^(2)B=B^(2)A`. If det. `(A-B) ne 0`, then find the value of det. `(A^(2)+B^(2))`.

Text Solution

Verified by Experts

The correct Answer is:
0

`(A^(2)+B^(2))(A-B)=A^(3)-A^(2)B+B^(2)A-B^(3)=O`
`:.` det. `[(A^(2)+B^(2))(A-B)]=0`
`implies` det. `(A^(2)+B^(2))xx`det. `(A-B)=0`
`implies` det. `(A^(2)+B^(2))=0` (as det. `(A-B) ne0`)
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A and P are different matrices of order n satisfying A^(3)=P^(3) and A^(2)P=P^(2)A (where |A-P| ne 0 ) then |A^(2)+P^(2)| is equal to (A) n (B) 0 (C) |A||P| (D) |A+P|

If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B , then find the value of det. (A^(3)+B^(3)+C^(3)) .

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I and det. (AB-A-2B+2I) ne 0 , then identify the correct statement(s), where I is identity matrix of order 3. (A) A^(2)+2A+4I=O (B) A^(2)+2A+4I neO (C) B^(2)+B+I=O (D) B^(2)+B+I ne O

If A and B are square matrices of the same order such that A^(2)=A,B^(2)=B,AB=BA=0 , then__

If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I , then tr. (A^(2)+B^(2)) is equal to ________.

A and B arer two matrices of order 3 × 3 which satisfy AB = A and BA =B then (A+B)^(7) is equal to___

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2)+7A-8I=O and B=A-2I . Also, det. A=8 , then

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Let A be any 3xx2 matrix. Then prove that det. (A A^(T))=0.

    Text Solution

    |

  2. Let A be a matrix of order 3, such that A^(T)A=I. Then find the value ...

    Text Solution

    |

  3. A and B are different matrices of order n satisfying A^(3)=B^(3) and A...

    Text Solution

    |

  4. Statement 1: if D=diag[d1, d2, ,dn],then D^(-1)=diag[d1^(-1),d2^(-1),...

    Text Solution

    |

  5. Point P(x, y) is rotated by an angle theta in anticlockwise direction....

    Text Solution

    |

  6. How many different diagonal matrices of order n can be formed which ar...

    Text Solution

    |

  7. How many different diagonal matrices of order n can be formed which ar...

    Text Solution

    |

  8. If A and B are n-rowed unitary matrices,then AB and BA are also unitar...

    Text Solution

    |

  9. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  10. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  11. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  12. For the matrix A=[(3, 1), (7, 5)] , find x and y so that A^2+x I=y Ado...

    Text Solution

    |

  13. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  14. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  15. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  16. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  17. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  18. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  19. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  20. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |