Home
Class 12
MATHS
For the matrix A=[(3, 1), (7, 5)] , find...

For the matrix `A=[(3, 1), (7, 5)]` , find `x` and `y` so that `A^2+x I=y Adot`

Text Solution

Verified by Experts

The correct Answer is:
`x=y=8, A^(-1)=[(5//8,-1//8),(-7//8,3//8)]`

We have
`A=[(3,1),(7,5)]`
`A^(2)=A A=[(3,1),(7,5)][(3,1),(7,5)]`
`=[(9+7,3+5),(21+35,7+25)]=[(16,8),(56,32)]`
Now, `A^(2)+xI=yA`
`implies [(16,8),(56,32)]+x[(1,0),(0,1)]=y[(3,1),(7,5)]`
`[(16+x,8+0),(56+0,32+x)]=[(3y,y),(7y,5y)]`
`16+x=3y, y=8, 7y=56, 5y=32+x`
Putting `y=8` in `16+x=3y`, we get `x=24-16=8`. Clearly, `x=8` and `y=8` also satify `7y=56` and `5y=32+x`. Hence,`x=8` and `y=8`. We have
`|A|=|(3,1),(7,5)|=8 ne 0`
So, A is invertible.
Putting `x=8, y=8` in `A^(2)+ xI=yA`, we get
`A^(2)+8I=8A`
`implies A^(-1) (A^(2)+8I)=8A^(-1) A`
`A^(-1) A^(2)+8A^(-1)I=8A^(-1) A`
`A+8A^(-1)=8I`
`[ :' A^(-1) A^(2)=(A^(-1) A)A=IA=A, A^(-1)I=A^(-1) and A^(-1) A=I]`
`8A^(-1)=8I-A`
or `A^(-1)=1/8 (8I-A)=1/8 {[(8,0),(0,8)]-[(3,1),(7,5)]}`
`=1/8 [(8-3,0-1),(0-7,8-5)]=1/8 [(5,-1),(-7,3)]=[(5//8,-1//8),(-7//8,3//8)]`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Find the values of x ,\ y,\ z if the matrix A=[(0,2y,z), (x, y,-z ),(x,-y, z)] satisfy the equation A^T\ A=I_3 .

Find the values of x, y, z if the matrix A=[(0, 2y,z),(x,y,-z),(x,-y,z)] satisfy the equation A'A=I .

If (3x + 2y, 12) = (5, 2x-3y), find the value of x and y.

If (x+1, y-2)=(3,1), find the values of x and y.

If x,y are real and x+iy = - i(-2+3i) find x and y .

If (x+y,y-2) = (3,1), find the values of x and y.

If x,y are real and x+iy=(5)/(-3+4i) find x and y .

Let the metrix A be given by A = ((2,1),(3,4)) . Obtain a matrix B such that AB = BA = I where I is the unit matris of order 2. Using this matrix B, solve for x and y from the following equations: 2x + y = 15 and 3x + 4y = 23

Consider point P(x, y) in first quadrant. Its reflection about x-axis is Q(x_(1), y_(1)) . So, x_(1)=x and y_(1)=-y . This may be written as : {(x_(1)=1. x+0.y),(y_(1)=0. x+(-1)y):} This system of equations can be put in the matrix as : [(x_(1)),(y_(1))]=[(1,0),(0,-1)][(x),(y)] Here, matrix [(1,0),(0,-1)] is the matrix of reflection about x-axis. Then find the matrix of reflection about the line y=x .

if (3x-2y):(5x-7y)=5:3 then, find x:y.

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  2. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  3. For the matrix A=[(3, 1), (7, 5)] , find x and y so that A^2+x I=y Ado...

    Text Solution

    |

  4. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  5. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  6. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  7. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  8. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  9. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  10. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  11. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  12. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  13. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  14. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  15. Show that the characteristics roots of an idempotent matrix are either...

    Text Solution

    |

  16. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |

  17. If A is symmetric as well as skew-symmetric matrix, then A is

    Text Solution

    |

  18. Elements of a matrix A or orddr 10xx10 are defined as a(i j)=w^(i+j) (...

    Text Solution

    |

  19. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  20. The equation [1 x y][(1,3,1),(0,2,-1),(0,0,1)] [(1),(x),(y)]=[0] has ...

    Text Solution

    |