Home
Class 12
MATHS
If A^(3)=O, then prove that (I-A)^(-1) =...

If `A^(3)=O`, then prove that `(I-A)^(-1) =I+A+A^(2)`.

Text Solution

Verified by Experts

Given`A^(3)=O`
Now, `(I-A) (I+A+A^(2))`
`=I^(2)+IA+IA^(2)-AI-A^(2)-A^(3)`
`=I+A+A^(2)-A-A^(2)-O`
`=I`
`:. (I-A)^(-1)=I+A+A^(2)`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A is a 2xx2 matrix such that A^(2)-4A+3I=O , then prove that (A+3I)^(-1)=7/24 I-1/24 A .

Given I_m=int_1^e(logx)^mdx ,then prove that (I_m)/(1-m)+m I_(m-2)=e

Let I_n=int_0^1x^ntan^(-1)xdx." Then prove that "(n+1)I_(n)+(n-1)I_(n-2)=pi/2-1/n"

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O

If A^3=O ,t h e nI+A+A^2 equals a. I-A b. (I+A^1)^(-1) c. (I-A)^(-1) d. none of these

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If A=[(1,0,2),(0,2,1),(2,0,3)] , prove that A^(3)-6A^(2)+7A+2I=0

If A=({:(1,4),(2,3):}) , then show that A^(2)-4A-5I=0 ,where I=({:(1,0),(0,1):}) " and " O=({:(0,0),(0,0):}) .

Prove that 1+i^2+i^4+i^6 =0

If z=x+iy and |2z+1|=|z-2i|,then prove that 3(x^2+y^2)+4(x+y)=3

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  2. For the matrix A=[(3, 1), (7, 5)] , find x and y so that A^2+x I=y Ado...

    Text Solution

    |

  3. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  4. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  5. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  6. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  7. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  8. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  9. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  10. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  11. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  12. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  13. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  14. Show that the characteristics roots of an idempotent matrix are either...

    Text Solution

    |

  15. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |

  16. If A is symmetric as well as skew-symmetric matrix, then A is

    Text Solution

    |

  17. Elements of a matrix A or orddr 10xx10 are defined as a(i j)=w^(i+j) (...

    Text Solution

    |

  18. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  19. The equation [1 x y][(1,3,1),(0,2,-1),(0,0,1)] [(1),(x),(y)]=[0] has ...

    Text Solution

    |

  20. Let Aa n dB be two 2xx2 matrices. Consider the statements (i) A B=O =>...

    Text Solution

    |