Home
Class 12
MATHS
If A =[[cos alpha,-sin alpha],[sinalpha,...

If `A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta, sin 2 beta],[sin beta ,-cos beta]]` where
`0 lt beta lt pi/2`, then prove that `BAB=A^(-1)`. Also, find the least
value of `alpha` of which `BA^(4) B= A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`alpha=(2pi)/3`

`BAB=A^(-1)`
`implies ABAB=I`
`implies (AB)^(2)=I`
Now,
`AB=[(cos alpha,-sin alpha),(sin alpha,cos alpha)][(cos 2 beta,sin 2 beta),(sin 2 beta,-cos 2 beta)]`
`=[(cos(alpha+2 beta),sin (alpha+2beta)),(sin (alpha+2beta),- cos (alpha +2beta))]`
and `(AB)^(2)=[(cos (alpha+2beta),sin (alpha+2beta)),(sin (alpha+2beta),-cos (alpha+2beta))]xx[(cos(alpha+2beta),sin (alpha+2beta)),(sin (alpha+2beta),-cos (alpha+2beta))]`
`=[(cos^(2)(alpha+2beta)+sin^(2) (alpha+2beta),0),(0,cos^(2) (alpha+2beta)+sin^(2) (alpha+2beta))]`
`=[(1,0),(0,1)]`
`=I`
`BA^(4)B=A^(-1)`
or `A^(4)B=B^(-1)A^(-1)=(AB)^(-1)=AB`
or `A^(4)=A` (1)
Now, `A^(2)=[(cos alpha,-sin alpha),(sin alpha,cos alpha)][(cos alpha,-sin alpha),(sin alpha,cos alpha)]`
`=[(cos 2 alpha,-sin 2 alpha),(sin 2 alpha,cos 2 alpha)]`
and `A^(4)=[(cos 4 alpha,-sin 4 alpha),(sin 4 alpha,cos 4 alpha)]`
Hence, from Eq. (1),
`[(cos 4 alpha,-sin 4 alpha),(sin 4 alpha,cos 4 alpha)]=[(cos alpha,-sin alpha),(sin alpha,cos alpha)]`
or `4alpha=2pi+alpha`
or `alpha=(2pi)/3`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If sin alpha = sin beta and cos alpha = cos beta then-

sin alpha + sin beta = a "and" cos alpha + cos beta = b sin (alpha + beta) =

sin alpha + sin beta = a "and" cos alpha + cos beta = b cos (alpha + beta) =

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .

Provet that the producet of the matrics [[cos^2 alpha cos alpha sin alpha], [ cos alpha sin alpha sin^2 alpha]] and [[cos^2 beta cos beta sin beta], [ cos beta sin beta sin^2 beta]] is the null matrix when alpha and beta differ by an odd multiple of pi / 2 .

Prove that (cos2 alpha-cos 2 beta)/(sin2 alpha+sin2 beta)=tan(beta-alpha)

If sin 2 alpha + sin 2 beta = 3 "and" cos 2 alpha + cos 2 beta = 4,"then"- sin 2 ( alpha + beta)

If sin alpha =sin beta and cos alpha = cos beta, then which obne of the following is correct ?

If cos^2 alpha - sin^2 alpha = tan^2 beta , then the value of (cos^2 beta - sin^2 beta) is____

If 0 lt alpha lt beta lt (pi)/(2) , prove that, tan alpha-tan beta lt alpha-beta .

CENGAGE PUBLICATION-MATRICES-All Questions
  1. For the matrix A=[(3, 1), (7, 5)] , find x and y so that A^2+x I=y Ado...

    Text Solution

    |

  2. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  3. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  4. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  5. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  6. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  7. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  8. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  9. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  10. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  11. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  12. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  13. Show that the characteristics roots of an idempotent matrix are either...

    Text Solution

    |

  14. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |

  15. If A is symmetric as well as skew-symmetric matrix, then A is

    Text Solution

    |

  16. Elements of a matrix A or orddr 10xx10 are defined as a(i j)=w^(i+j) (...

    Text Solution

    |

  17. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  18. The equation [1 x y][(1,3,1),(0,2,-1),(0,0,1)] [(1),(x),(y)]=[0] has ...

    Text Solution

    |

  19. Let Aa n dB be two 2xx2 matrices. Consider the statements (i) A B=O =>...

    Text Solution

    |

  20. The number of diagonal matrix, A or ordern which A^3=A is a. is a a. 1...

    Text Solution

    |