Home
Class 12
MATHS
If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then...

If `A=[{:(1,0,0),(1,0,1),(0,1,0):}]`, then which is true (a) `A^(3)-A^(2)=A-I` (b) det. `(A^(100)-I)=0` (c) `A^(200)=[(1,0,0),(100,1,0),(100,0,1)]` (d) `A^(100)=[(1,1,0),(50,1,0),(50,0,1)]`

A

`A^(3)-A^(2)=A-I`

B

det. `(A^(100)-I)=0`

C

`A^(200)=[(1,0,0),(100,1,0),(100,0,1)]`

D

`A^(100)=[(1,1,0),(50,1,0),(50,0,1)]`

Text Solution

Verified by Experts

`A^(2)=[(1,0,0),(1,0,1),(0,1,0)][(1,0,0),(1,0,1),(0,1,0)]=[(1,0,0),(1,1,0),(1,0,1)]`
`A^(3)=[(1,0,0),(1,0,1),(0,1,1)][(1,0,0),(1,1,0),(1,0,1)]=[(1,0,0),(2,0,1),(1,1,0)]`
`A^(3)=A^(2)=[(0,0,0),(1,-1,1),(0,1,-1)]`
and `A-I = [(0,0,0),(1,-1,1),(0,1,-1)]` ltvbrgt `implies A^(3)-A^(2)=A-I` (1)
Now, det `(A^(n)-I)=` det. `((A-I)(I+A+A^(2)+...+A^(n-1)))`
`=" det."(A-1)xx"det. "(I+A+A^(2)+...+A^(n-1))`
`=0`
From (1), `A^(4)-A^(3)=A^(2)-A` (2)
Again from (1), `A^(5)-A^(4)=A^(3)-A^(2)=A-I`
Thus, if `n` is even, `A^(n)-A^(n-1)=A^(2)-A` (3)
If `n` is odd, `A^(n)-A^(n-1)=A-I` (4)
Consider the n is even.
`:. A^(n)-A^(n-1)=A^(2)-A` [from (3)]
and `A^(n-1)-A^(n-2)=A-I` [from (4)]
Adding these, we get
`A^(n)-A^(n-2)=A^(2)-I`
`implies A^(n)=A^(n-1)+A^(2)-I`
`=(A^(n-1)+A^(2)-I)+A^(2)-I`
`=(A^(n-6)+A^(2)-I)+2(A^(2)-I)`
`{:(...,...,...),(...,...,...):}`
`=(A^(2))+(n-2)/2 (A^(2)-I)`
`:. A^(n)=(n/2) A^(2)-((n-2)/2)I`
`:. A^(200)=100 A^(2)-991`
`=100 [(1,0,0),(1,1,0),(1,0,1)]-99 [(1,0,0),(0,1,0),(0,0,1)]=[(1,0,0),(100,1,0),(100,0,1)]`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,0),(0,1,0),(0,0,1)] then A^2+2A=

If A = [{:(1,0,1),(0,1,2),(0,0,4):}] , then show that |3A|=27|A|.

If A=[(0,1),(1,0)] ,then A^4=

If A={:[(1,0),(-1,7)] and I={:[(1,0),(0,1)] , then find k so that A^(2)=8A+kI

If A={:[(2,0,1),(1,0,-1),(0,-1,1)]:}, find the matrix for the polynomial A^(2)-4A+3I.

If A={:[(0,-1),(1,0)]:} and B={:[(0,i),(i,0)]:} , then

If B [(1,-1,1),(2,-1,0),(1,0,0)] ,does B^(-1) exist?

If A = [(1,-1,1),(2,-1,0),(1,0,0)] find A^(2) and show that A^(2) = A^(-1) .

If [(0, 1), (-1,0)]^n = [(1,0),(0, 1)] then the value of n is

CENGAGE PUBLICATION-MATRICES-All Questions
  1. P is a non-singular matrix and A, B are two matrices such that B=P^(-1...

    Text Solution

    |

  2. Let A=[(1,2,2),(2,1,2),(2,2,1)] . Then

    Text Solution

    |

  3. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then which is true (a) A^(3)-A^(2...

    Text Solution

    |

  4. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  5. If A=(a(i j))(nxxn) and f is a function, we define f(A)=((f(a(i j))))(...

    Text Solution

    |

  6. If A is a matrix such that A^2+A+2I=Odot, the which of the following i...

    Text Solution

    |

  7. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  8. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  9. If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-...

    Text Solution

    |

  10. If A is an invertible matrix, then (a d jdotA^(-1)) is equal to a.[a ...

    Text Solution

    |

  11. If A and B are two invertible matrices of the same order, then adj (AB...

    Text Solution

    |

  12. If Aa n dB are three square matrices of the same order, then A B=A C ...

    Text Solution

    |

  13. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  14. If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I a...

    Text Solution

    |

  15. Let A, B be two matrices different from identify matrix such that AB=B...

    Text Solution

    |

  16. Let A and B be square matrices of the same order such that A^(2)=I and...

    Text Solution

    |

  17. Let B is an invertible square matrix and B is the adjoint of matrix A ...

    Text Solution

    |

  18. First row of a matrix A is [1,3,2]. If adj A=[(-2,4,alpha),(-1,2,1),...

    Text Solution

    |

  19. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |

  20. Which of the following matrices have eigen values as 1 and -1 ?

    Text Solution

    |