Home
Class 12
MATHS
Consider an arbitarary 3xx3 non-singular...

Consider an arbitarary `3xx3` non-singular matrix `A[a_("ij")]`. A matrix `B=[b_("ij")]` is formed such that `b_("ij")` is the sum of all the elements except `a_("ij")` in the ith row of A. Answer the following questions :
If there exists a matrix X with constant elemts such that AX=B`, then X is

A

skew-symmetric

B

null matrix

C

diagonal matrix

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

`A=[(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33))]`
`implies B=[(a_(12)+a_(13),a(11)+a_(13),a_(11)+a_(12)),(a_(22)+a_(23),a_(21)+a_(23),a_(21)+a_(22)),(a_(32)+a_(33),a_(31)+a_(33),a_(31)+a_(32))]`
`implies X=A^(-1) B`
`=1/(|A|)[(C_(11),C_(21),C_(31)),(C_(12),C_(22),C_(32)),(C_(13),C_(23),C_(33))]`
`[(a_(12)+a_(13),a_(11)+a_(13),a_(11)+a_(12)),(a_(22)+a_(23),a_(21)+a_(23),a_(21)+a_(22)),(a_(32)+a_(33),a_(31)+a_(33),a_(31)+a_(32))]`
`=1/(|A|) [(0,|A|,|A|),(|A|,0,|A|),(|A|,|A|,0)]=[(0,1,1),(1,0,1),(1,1,0)]`
`implies |A^(-1)B|=2`
or `|A^(-1)||B|=2`
or `|B|=2|A|`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Let A=[a_("ij")] be 3xx3 matrix and B=[b_("ij")] be 3xx3 matrix such that b_("ij") is the sum of the elements of i^(th) row of A except a_("ij") . If det, (A)=19 , then the value of det. (B) is ________ .

Let A=[a_("ij")] be 3xx3 matrix and B=[b_("ij")] be 3xx3 matrix such that b_("ij") is the sum of the elements of i^(th) row of A except a_("ij") . If det, (A)=19 , then the value of det. (B) is ________ .

Let A=[a_(ij)]_(m×n) is defined by a_(ij)=i+j . Then the sum of all the elements of the matrix is

If A=[a_(ij)] is a 2xx2 matrix such that a_(ij)=i+2j then A will be___

If A = [a_(ij)] is a 2 xx2 matrix such that a_(ij)=i+2j , then A will be

Consider a matrix A=[a_("ij")] of order 3xx3 such that a_("ij")=(k)^(i+j) where k in I . Match List I with List II and select the correct answer using the codes given below the lists.

If matrix A=[a_(ij)]_(3xx3) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If A=[a_(ij)] is a 3xx2 matrix whose elements are given by a_(ij)=3i-2j , then A will be__

P is a non-singular matrix and A, B are two matrices such that B=P^(-1) AP . The true statements among the following are

If A=[a_(ij)] is a care 2xx2 matrix whose elements are a_(ij)=(1)/(2) (i+2j)^(2) , then A will be____

CENGAGE PUBLICATION-MATRICES-All Questions
  1. if A and B are two matrices of order 3xx3 so that AB=A and BA=B then (...

    Text Solution

    |

  2. If A and B are two square matrices of order 3xx3 which satify AB=A and...

    Text Solution

    |

  3. Consider an arbitarary 3xx3 non-singular matrix A[a("ij")]. A matrix B...

    Text Solution

    |

  4. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  5. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  6. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  7. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  8. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  9. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  10. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  11. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  12. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  13. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  14. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  15. Match the following lists :

    Text Solution

    |

  16. Match the following lists :

    Text Solution

    |

  17. Match the following lists :

    Text Solution

    |

  18. Consider a matrix A=[a("ij")] of order 3xx3 such that a("ij")=(k)^(i+j...

    Text Solution

    |

  19. Match the following lists :

    Text Solution

    |

  20. A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r e I i...

    Text Solution

    |