Home
Class 12
MATHS
Let for A=[(1,0,0),(2,1,0),(3,2,1)], the...

Let for `A=[(1,0,0),(2,1,0),(3,2,1)]`, there be three row matrices `R_(1), R_(2)` and `R_(3)`, satifying the relations, `R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)]` and `R_(3)A=[(2,3,1)]`. If B is square matrix of order 3 with rows `R_(1), R_(2)` and `R_(3)` in order, then
The value of det. `(2A^(100) B^(3)-A^(99) B^(4))` is

A

`-2`

B

`-1`

C

2

D

-27

Text Solution

Verified by Experts

The correct Answer is:
D

`overset(B)([(-,R_(1),-),(-,R_(2),-),(-,R_(3),-)])overset(A)([(1,0,0),(2,1,0),(3,2,1)])=overset(C)([(1,0,0),(2,3,0),(2,3,1)])` (1)
`:.` (det. B) (det. A)=3
`:.` (det. B)=3 [as det. A=1]
det. `(2A^(100)B^(3)-A^(99)B^(4))`
= det. `(A^(99) (2A-B)B^(3))`
`=("det. A")^(99)xxdet. (2A-B)xx("det B")^(3)`
Now from (1), we get
`B=A^(-1) C=[(1,0,0),(-2,1,0),(1,-2,1)][(1,0,0),(2,3,0),(2,3,1)]`
`=[(1,0,0),(0,3,0),(-1,-3,1)]`
`:. 2A-B=[(1,0,0),(4,-1,0),(7,7,1)]`
`:.` det. `(2A-B)=-1`
`:.` det. `(2A^(100) B^(3)-A^(99) B^(4))=(1)^(99) (-1) (3)^(3)=-27`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (B) is

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

If R={(1,-1),(2,0),(3,1),(5,3)} is a relation then R^(-1) is

In triangle ABC, if r_(1) = 2r_(2) = 3r_(3) , then b : c is equal to

Let P=[(1,2,1),(0,1,-1),(3,1,1)] . If the product PQ has inverse R=[(-1,0,1),(1,1,3),(2,0,2)] then Q^(-1) equals

If r cos theta = 1/2 and r sin theta = sqrt3/2 , then find the value of r , when 0 ∘ <θ<90 ∘ .

In DeltaABC, the value of ((r_1+r_2)(r_2+r_3)(r_3+r_1))/(R(s)^(2) is

In any triangle ABC, find the least value of (r_(1) r_(2)r_(3))/(r^3)

In Delta ABC , if r_(1) lt r_(2) lt r_(3) , then find the order of lengths of the sides

If in a triangle (r)/(r_(1)) = (r_(2))/(r_(3)) , then

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  2. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  3. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  4. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  5. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  6. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  7. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  8. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  9. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  10. Match the following lists :

    Text Solution

    |

  11. Match the following lists :

    Text Solution

    |

  12. Match the following lists :

    Text Solution

    |

  13. Consider a matrix A=[a("ij")] of order 3xx3 such that a("ij")=(k)^(i+j...

    Text Solution

    |

  14. Match the following lists :

    Text Solution

    |

  15. A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r e I i...

    Text Solution

    |

  16. If [a b c1-a] is an idempotent matrix and f(x)=x-^2=b c=1//4 , then th...

    Text Solution

    |

  17. Let x be the solution set of equation A^x=Idot,w h e r eA+[0 1-1 4-3 4...

    Text Solution

    |

  18. A=[[1,t a n x],[-t a n x,1]] \ a n d \ f(x) is defined as f(x)=d e t(A...

    Text Solution

    |

  19. The equation [[1, 2 ,2 ],[1 ,3, 4],[ 2, 4,k]][(x) ,(y), (z)] =[(0),(0)...

    Text Solution

    |

  20. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |