Home
Class 12
MATHS
Consider a matrix A=[a("ij")] of order 3...

Consider a matrix `A=[a_("ij")]` of order `3xx3` such that `a_("ij")=(k)^(i+j)` where `k in I`.
Match List I with List II and select the correct answer using the codes given below the lists.

A

`{:(a,b,c,d),(r,p,s,q):}`

B

`{:(a,b,c,d),(s,p,q,r):}`

C

`{:(a,b,c,d),(r,p,q,s):}`

D

`{:(a,b,c,d),(q,p,r,s):}`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `A=[A_("ij")]_(3xx3)`, where `a_("ij")=(k)^(i+j)`
So, `A=[(k^(2),k^(3),k^(4)),(k^(3),k^(4),k^(5)),(k^(4),k^(5),k^(6))]`
a. If A is singular, then `|A|=0`
`implies k^(2).k^(3).k^(4) |(1,1,1),(k,k,k),(k^(2),k^(2),k^(2))|=0`,
`implies k in I`
b. If A is null matrix, then `k in {0}`
c. There is no value of `k` for `A` to be skew-symmetric matrix which is not null-matrix.
`:. k in phi`
d. If `A^(2)=3A`, then
`[(k^(2),k^(3),k^(4)),(k^(3),k^(4),k^(5)),(k^(4),k^(5),k^(6))][(k^(2),k^(3),k^(4)),(k^(3),k^(4),k^(5)),(k^(4),k^(5),k^(6))]=[(3k^(2),3k^(3),3k^(4)),(3k^(3),3k^(4),3k^(5)),(3k^(4),3k^(5),3k^(6))]`
`implies [(k^(4)+k^(6)+k^(8),k^(5)+k^(7)+k^(9),k^(6)+k^(8)+k^(10)),(k^(5)+k^(7)+k^(9),k^(6)+k^(8)+k^(10),k^(7)+k^(9)+k^(11)),(k^(6)+k^(8)+k^(10),k^(7)+k^(9)+k^(11),k^(8)+k^(10)+k^(12))]`
`=[(3k^(2),3k^(3),3k^(4)),(3k^(3),3k^(4),3k^(5)),(3k^(4),3k^(5),3k^(6))]`
`implies k in {-1, 0, 1}`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Match List I with List II and select the correct answer using the code given below the lists:

Match list - I with list - II and select the correct answer using the code given below the lists

Match list - I with list - II and select the correct answer using codes given below the lists

Match list-l with list-II and select the correct answer using the code given below the lists.

Match List-l with List-II and select the correct answer using one the codes given below the lists

Match List I with List II and choose the correct answer

Match list -I List-II and select the correct answer using the codes given below the lists

Match list-I with list-II and select the correct answer using the codes given below lists

Match list-I with list-II and select the correct answer using the codes given below lists

Match list I with list II and select the correct option

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Match the following lists :

    Text Solution

    |

  2. Match the following lists :

    Text Solution

    |

  3. Consider a matrix A=[a("ij")] of order 3xx3 such that a("ij")=(k)^(i+j...

    Text Solution

    |

  4. Match the following lists :

    Text Solution

    |

  5. A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r e I i...

    Text Solution

    |

  6. If [a b c1-a] is an idempotent matrix and f(x)=x-^2=b c=1//4 , then th...

    Text Solution

    |

  7. Let x be the solution set of equation A^x=Idot,w h e r eA+[0 1-1 4-3 4...

    Text Solution

    |

  8. A=[[1,t a n x],[-t a n x,1]] \ a n d \ f(x) is defined as f(x)=d e t(A...

    Text Solution

    |

  9. The equation [[1, 2 ,2 ],[1 ,3, 4],[ 2, 4,k]][(x) ,(y), (z)] =[(0),(0)...

    Text Solution

    |

  10. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  11. Let A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2...

    Text Solution

    |

  12. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  13. Let A=([a(i j)])(3xx3) be a matrix such that AA^T=4Ia n da(i j)+2c(i j...

    Text Solution

    |

  14. Let S be the set which contains all possible values of l ,m ,n ,p ,q ,...

    Text Solution

    |

  15. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  16. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  17. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  18. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  19. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  20. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |