Home
Class 12
MATHS
Let z= (-1+sqrt(3i))/2, where i=sqrt(-1)...

Let `z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)]` and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) for which `P^2=-I` is

Text Solution

Verified by Experts

The correct Answer is:
1

`Z=(-1+isqrt(3))/2= omega`
`P=[((-omega)^(r),omega^(2s)),(omega^(2s),omega^(r))]`
`P^(2)=[((-omega)^(r),omega^(2s)),(omega^(2s),omega^(r))][((-omega)^(r),omega^(2s)),(omega^(2s),omega^(r))]`
`=[((-omega)^(2r)+(omega^(2s))^(2),omega^(2s) (-omega)^(r)+omega^(r) omega^(2s)),(omega^(2s) (-omega)^(r)+omega^(r) omega^(2s),omega^(4s)+omega^(2s))]`
`=[(omega^(4s)+omega^(2r),omega^(2s)(omega^(r)+(-omega)^(r))),(omega^(2s) (omega^(r)+(-omega)^(r)),omega^(4s)+omega^(2r))]`
`=-I` (Given)
`:. Omega^(4S)+omega^(2r)=-1` and
`omega^(2s) (omega^(t) + (-omega)^(r))=0`
`:. omega^(r)+(-omega)^(r)=0`
`:. r=1` and `s=1`
So only one pair
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If z_(1)=3i and z_(2)=-1-i , where i=sqrt(-1) find the value of arg ((z_(1))/(z_(2)))

If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

If z=(i)^((i)^(i)) w h e r e i=sqrt(-1),t h e n|z| is equal to a. 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If z=(1+i)(1+sqrt 3i)^2/(1-i) , then argz equal

If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

Let R be the relation on Z defined by R = {(a,b),a, b in Z,a^2 =b^2} Find R

If (1+i)^2 /(3 - i) =Z , then Re(z) =

Find the complex number z satisfying R e(z^2) =0,|z|=sqrt(3.)

The reflection of the complex number (2-i)/(3+i) where (i=sqrt(-1) in the straight line z(1+i)=barz(i-1) is

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Let K be a positive real number and A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt...

    Text Solution

    |

  2. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  3. Let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |

  4. If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]and B=[{:(a^(2),ab,ac),(ab,b^(2),...

    Text Solution

    |

  5. If the value of prod(k=1)^(50)[{:(1,2k-1),(0,1):}] is equal to [{:(1,r...

    Text Solution

    |

  6. A square matrix P satisfies P^(2)=I-P, where I is identity matrix. If ...

    Text Solution

    |

  7. A and B are two square matrices such that A^(2)B=BA and if (AB)^(10)=A...

    Text Solution

    |

  8. If matrix A=[a(ij)](3xx3), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0...

    Text Solution

    |

  9. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  10. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(1):}]. If AB ...

    Text Solution

    |

  11. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  12. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  13. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  14. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  15. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  16. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  17. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  18. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  19. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  20. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |