Home
Class 12
MATHS
Let n ge 2 be a natural number and 0 lt ...

Let `n ge 2` be a natural number and `0 lt theta lt (pi)/(2)`, Then, `int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta` is equal to (where C is a constant of integration)

A

`n/(n^2-1)(1-1/(sin^(n+1)theta))^((n+1)/n)+C`

B

`n/(n^2+1)(1-1/(sin^(n-1)theta))^((n+1)/n)+C`

C

`n/(n^2-1)(1-1/(sin^(n-1)theta))^((n+1)/n)+C`

D

`n/(n^2-1)(1+1/(sin^(n-1)theta))^((n+1)/n)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 8|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 6|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

int (sin^(2)theta d theta)/((1 + cos theta)^(2))

Find theta if sin theta -cos theta lt0

int cos 2theta log ((cos theta+sin theta)/(cos theta-sin theta))d theta

int (cos theta d theta)/(sin^(2) theta - 5 sin theta)

Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

If cos^2 theta-sin^2 theta= 1/2 then cos^4 theta-sin^4 theta=?

sin 2theta = cos 3theta (0 lt theta lt pi)

int_(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in I ) is equal to