Home
Class 12
MATHS
If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f...

If `intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c`, where c is contant of intergration then `f(x)` equals to (a) `-4x^3-1` (b) `-1-2x^3` (c) `4x^3+1` (d) `1-2x^3`

A

`-4x^3-1`

B

`4x^3+1`

C

`-2x^3-1`

D

`-2x^3+1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 8|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 6|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

int (e^(4x)-2e^(3x)+5e^(x)-2)/(e^(x)+1)dx

If intsqrt((cosx-cos^3x)/((1-cos^3x)))dx=f(x)+c , then f(x) is equal to

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is

"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.

Evaluate : int (2e^(4x)-3e^(2x)+4)/(e^(3x))dx

Use the Factor Theorem to determine whether g (x) is factor of f(x) in each of the following cases: (i) f (x) = 5x ^(3) + x ^(2)-5x -1, g (x)=x +1 (ii) f (x) = x ^(3) + 3x ^(2) + 3x +1 , g(x) =x +1 (iii) f (x) =x ^(3) - 4x ^(2) +x + 6, g (x) =x -2 (iv) f (x) = 3x ^(3) - 20x + 12, g (x) = 3x -2 (v) f (x) = 4x ^(3) + 20 x ^(2) + 33 x +18, g (x) =2x +3

Prove : int sin x sin 2x sin 3x dx = - 1/48 ( 6 cos 2x + 3 cos 4x - 2 cos 6 x) + c

The domain of defination of the function ""^(16-x)C_(2x-1) +""^(20-3x)P _(4x-5) is-

If the normal to the curve y=f(x) at the point (3,4) makes an angle (3pi)/4 with the positive x-axis, then f'(3)= (a) -1 (b) -3/4 (c) 4/3 (d) 1

If f(x+1/2)+f(x-1/2)=f(x)fora l lx in R , then the period of f(x) is (a) 1 (b) 2 (c) 3 (d) 4