Home
Class 12
MATHS
If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2...

If `int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C`, where C is a constant of integration, then f(x) is equal to

A

`1/3(x+4)`

B

`1/3(x+1)`

C

`2/3(x+2)`

D

`2/3(x-4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 8|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 6|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If intf(x)sinxcosxdx=(1)/(2(b^2-a^2))logf(x)+c , where c is the constant of integration, then f(x)=

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

If inte^(sinx)[(xcos^3x-sinx)/(cos^2x)]dx=e^(sinx)*f(x)+c , where c is constant of integration, then f(x)=

int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log_(e)(f(x))+g(x)+C where C is the constant of integration and f(x) is positive. Then f(x)+g(x) has the value equal to

int((x+1)dx)/(sqrt(1-2x-x^(2)))

If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C ,for a suitable chosen integer m and a function A(x), where C is a constant of integration, then (A(x))^m equals

int (dx)/((1+x)sqrt(1+2x-x^(2)))

int(dx)/(sqrt(1-2x)+sqrt(3-2x)) =

If int (xe^x)/(sqrt(1 + e^x)) dx = f(x) sqrt(1 + e^x) - 2 In g(x) + c , then

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2log|g(x)|+c , then-