If equation `|sqrt((x-tantheta)^(2)+(y-sqrt3tantheta)^(2))-sqrt((x-2tantheta)^(2)+y^(2))|=2,theta in[0,pi]-{(pi)/(2)}` represents hyperbola, then find the value of `theta`.
Text Solution
Verified by Experts
We have `|underset("Distance between "F_(1) (tantheta,sqrt3tantheta)and P(x,y))(sqrt(ubrace((x-tantheta)^(2)+(y-sqrt3tantheta)^(2))))-underset("Distance between"F_(2)(2tan theta,0) and P(x,y))(sqrt(ubrace((x-2tantheta)^(2)+y^(2))))|=2` So, `|R_(1)P-F_(2)P|=2,` where `P-=(x,y),F_(1)-=(tan theta,sqrt3 tan theta) and F_(2)-=(2 tan theta, 0).` Therefore, given equation represents a hyperbola if `F_(1)F_(2)gt2` `rArr" "sqrt((tantheta-2tan theta)^(2)+sqrt3 tan theta-0^(2))gt2` `rArr" "|2tantheta|gt2` `rArr" "|tan theta|gt1` Hence, `thetain((pi)/(5),(pi)/(2))uu((pi)/(2),(3pi)/(4))`