Tangents drawn from the point (c, d) to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` make angles `alpha` and `beta` with the x-axis. If `tan alpha tan beta=1`, then find the value of `c^(2)-d^(2)`.
Text Solution
Verified by Experts
One of the equations of tangents to the hyperbola having slope m is `y=mx+sqrt(a^(2)m^(2)-b^(2))`. It passes through (c, d). So, `d=mc+sqrt(a^(2)m^(2)-b^(2))` `"or "(d-mc)^(2)=a^(2)m^(2)-b^(2)` `"or "(c^(2)-a^(2))m^(2)-2cdm+d^(2)+b^(2)=0` `"or Product of roots"=m_(1)m_(2)=(a^(2)+b^(2))/(c^(2))-a^(2)` `"or "tan alpha tan beta=(d^(2)+b^(2))/(c^(2)-a^(2))=1` `"or "d^(2)+b^(2)=c^(2)-a^(2)` `"or "c^(2)-d^(2)=a^(2)+b^(2)`
Two tangents are drawn from a point on hyperbola x^(2)-y^(2)=5 to the ellipse (x^(2))/(9)+(y^(2))/(4)=1 . If they make angle alpha and beta with x-axis, then
Tangents are drawn from the point (alpha, beta) to the hyperbola 3x^2- 2y^2=6 and are inclined atv angle theta and phi to the x-axis.If tan theta.tan phi=2 , prove that beta^2 = 2alpha^2 - 7 .
If sin(alpha + beta) = 4/5 and sin (alpha - beta)= 5/13 , find the value of tan 2 alpha .
If tan alpha = x+1 "and" tan beta = x-1."then the value of" x "will be-"
tan (alpha + beta) =1/2, tan(alpha - beta) = 1/3 "then the value of" tan^(2) alpha is-
If the component lines whose combined equation is px^(2)-qxy-y^(2)=0 make the angles alphaand beta with x-axis , then find the value of tan (alpha+beta) .
If two distinct tangents can be drawn from the point (alpha, alpha+1) on different branches of the hyperbola (x^(2))/(9)-(y^(2))/(16)=1 , then find the values of alpha .
If sin ( alpha + beta ) =(4)/(5) and sin (alpha - beta ) =(5)/(13), find the value of tan 2 alpha
If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0 , then find the value of tan^(-1) alpha - tan^(-1) beta
P( asec alpha, b tan alpha ) and Q (a sec beta, b tan beta) are two given points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) = 1. Show that the equation of the chord PQ is (x)/(a) cos (alpha - beta)/(2) - (y)/(b) sin (alpha + beta)/(2) = cos (alpha+beta)/(2).