Show that the locus represented by `x=(1)/(2)a(t+(1)/(t)),y=(1)/(2)a(t-(1)/(t))` is a rectangular hyperbola.
Text Solution
Verified by Experts
Let point P be `(a sec theta, b tan theta)`. Equation of tangent at point P is `(x)/(a)sec theta-(y)/(b)tan theta=1` Equation of asymptotes are `y=pm(b)/(a)x.` Solving asymptotes with tangent, we get `Q-=((a)/(sectheta-tantheta),(b)/(sectheta-tantheta))` `"and "R-=((a)/(sectheta+tantheta),(-b)/(sectheta+tantheta))` `therefore" Area of triangle CQR"=(1)/(2)||(0,0),((a)/(sectheta-tantheta),(b)/(sectheta-tantheta)),((a)/(sectheta+tantheta),(-b)/(sectheta+tantheta)),(0,0)||` `=(1)/(2)|-(a)/(sectheta-tantheta).(b)/(sectheta+tantheta)-(a)/(sectheta-tantheta).(b)/(sectheta+tantheta)|` = ab, which is constant. Also, midpoint of QR is `(((1)/(sectheta-tantheta)+(1)/(sectheta+tantheta))/(2),((b)/(sectheta-tantheta)-(b)/(sectheta+tantheta))/(2))` `-=(a sec theta, b tan theta)`, which is point P.
Find the equation to the locus represented by x=(2+t+1)/(3t-2), y=(t-1)/(t+1) wher t is variable parameter.
If t is a variable parameter, show that x=(a)/(2)(t+(1)/(t)) and y = (b)/(2)(t-(1)/(t)) represent a hyperbola.
If t is a parameter, then x=a(t+(1)/(t)),y=b(t-(1)/(t)) represents
The eccentricity of the hyperbola 2x = a(t + (1)/(t)), 2y = a(t-(1)/(t))
Show that for all values of t the point x=c((1+t^2)/(1-t^2)) , y=(2ct)/(1-t^2) lia.on a on a fixed hyperbola. What is the eccentricity of the hyperbola.
The locus of a point reprersented by x=a/2((t+1)/t),y=a/2((t-1)/t) , where t in R-{0}, is (a) x^2+y^2=a^2 (b) x^2-y^2=a^2 (c) x+y=a (d) x-y=a
(1)/(4) T T, (1)/(2)Tt,(1)/(4) t t is binomial expansion of
Show that for all values of t the point x = a. (1 + t^(2))/(1-t^(2)), y = (2at)/(1-t^(2)) lies on a fixed hyperbola. What is the value of the eccentricity of the hyperbola?
If t be a variable parameter, show that the point x = a(1 -t^(2))/(1+t^(2)),y = b(2t)/(1 + t^(2)) always lies on an ellipse .
Show that the curve whose parametric coordinates are x=t^(2)+t+l,y=t^(2)-t+1 represents a parabola.