Home
Class 12
MATHS
Let P(6,3) be a point on the hyperbola p...

Let P(6,3) be a point on the hyperbola parabola `x^2/a^2-y^2/b^2=1`If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

Text Solution

Verified by Experts

Normal at (6, 3) to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` is
`(a^(2)x)/(6)+(b^(2)y)/(3)=a^(2)+b^(2)`
It passes through (9,0).
`therefore" "(9a^(2))/(6)=a^(2)+b^(2)`
`rArr" "(b^(2))/(a^(2))=(1)/(2)`
`rArr" "e^(2)-1=(1)/(2)`
`therefore" "e=sqrt((3)/(2))`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES|11 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.1|3 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

Let P(4,3) be a point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 . If the normal at P intersects the x-axis at (16,0), then the eccentriclty of the hyperbola is

The eccentricity of the hyperbola x^2-y^2=4 is

The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1 . If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1 . If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

The eccentricity of the hyperbola 4x^(2)-9y^(2) =36 is:

Let P(a sec theta , b tan theta ) and Q(a sec phi , b tan phi) where theta + phi = (pi)/(2) be two point on the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) =1 .If ( h, k) be the point of intersection of the normals at P and Q , then the value of k is -

Let L L ' be the latus rectum through the focus of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 and A ' be the farther vertex. If A ' L L ' is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes).

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 passes through the point (0,-b) and the normal at P passes through the point (2asqrt(2),0) . Then the eccentricity of the hyperbola is

PQ is the double ordinate of the hyperbola x^2/a^2-y^2/b^2=1 and O is the centre of the hyperbola. If triangle OPQ is an equilateral triangle, then show that the eccentricity of this hyperbola is e) e^2 >4/3

(8,3sqrt3) is a point on the hyperbola 9x^(2) - 16y^(2) = 144.