Home
Class 12
MATHS
Show that the locus represented by x=(1)...

Show that the locus represented by `x=(1)/(2)a(t+(1)/(t)),y=(1)/(2)a(t-(1)/(t))` is a rectangular hyperbola.

Text Solution

Verified by Experts

Squaring and subtracting the given equations, we get
`x^(2)-y^(2)=a^(2)` which is a rectangular hyperbola.
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.3|10 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.4|5 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.1|3 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

Find the equation to the locus represented by x=(2+t+1)/(3t-2), y=(t-1)/(t+1) wher t is variable parameter.

If t is a variable parameter, show that x=(a)/(2)(t+(1)/(t)) and y = (b)/(2)(t-(1)/(t)) represent a hyperbola.

If t is a parameter, then x=a(t+(1)/(t)),y=b(t-(1)/(t)) represents

The eccentricity of the hyperbola 2x = a(t + (1)/(t)), 2y = a(t-(1)/(t))

Show that for all values of t the point x=c((1+t^2)/(1-t^2)) , y=(2ct)/(1-t^2) lia.on a on a fixed hyperbola. What is the eccentricity of the hyperbola.

The locus of a point reprersented by x=a/2((t+1)/t),y=a/2((t-1)/t) , where t in R-{0}, is (a) x^2+y^2=a^2 (b) x^2-y^2=a^2 (c) x+y=a (d) x-y=a

(1)/(4) T T, (1)/(2)Tt,(1)/(4) t t is binomial expansion of

Show that for all values of t the point x = a. (1 + t^(2))/(1-t^(2)), y = (2at)/(1-t^(2)) lies on a fixed hyperbola. What is the value of the eccentricity of the hyperbola?

If t be a variable parameter, show that the point x = a(1 -t^(2))/(1+t^(2)),y = b(2t)/(1 + t^(2)) always lies on an ellipse .

Show that the curve whose parametric coordinates are x=t^(2)+t+l,y=t^(2)-t+1 represents a parabola.