Home
Class 12
MATHS
The locus of a point, from where the tan...

The locus of a point, from where the tangents to the rectangular hyperbola `x^2-y^2=a^2` contain an angle of `45^0` , is (a) `(x^2+y^2)^2+a^2(x^2-y^2)=4a^2` (b) `2(x^2+y^2)^2+4a^2(x^2-y^(2))=4a^2` (c) `(x^2+y^2)^2+4a^2(x^2-y^2)=4a^2` (d) `(x^2+y^2)+a^2(x^2-y^(2))=a^4`

A

`(x^(2)+y^(2))^(2)+a^(2)(x^(2)-y^(2))=4a^(2)`

B

`2(x^(2)+y^(2))^(2)+4a^(2)(x^(2)-y^(2))=4a^(2)`

C

`(x^(2)+y^(2))^(2)+4a^(2)(x^(2)-y^(2))=4a^(4)`

D

`(x^(2)+y^(2))^(2)+a^(2)(x^(2)-y^(2))=a^(4)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `y=mx pm sqrt(m^(2)a^(2)-a^(2))` be two tangents that pass through (h,k). Then
`(k-mh)^(2)=m^(2)a^(2)-a^(2)`
`"or "m^(2)(h^(2)-a^(2))-2khm+k^(2)+a^(2)=0`
`"or "m_(1)+m_(2)=(2kh)/(h^(2)-a^(2))`
and `m_(1)m_(2)=(k^(2)+a^(2))/(h^(2)-a^(2))`
Now, `tan45^(@)=(m_(1)-m_(2))/(1+m_(1)m_(2))`
`"or "1=((m_(1)+m_(2))^(2)-4m_(1)m_(2))/((1+m_(1)m_(2))^(2))`
`"or "(1+(k^(2)+a^(2))/(h^(2)-a^(2)))^(2)=((2kh)/(h^(2)-a^(2)))^(2)-4((k^(2)+a^(2))/(h^(2)-a^(2)))`
`"or "(h^(2)+k^(2))^(2)=4h^(2)k^(2)-4(k^(2)+a^(2))(h^(2)-a^(2))`
`"or "(x^(2)+y^(2))^(2)=4(a^(2)y^(2)-a^(2)x^(2)+a^(4))`
`"or "(x^(2)+y^(2))^(2)+4a^(2)(x^(2)-y^(2))=4a^(4)`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWERS TYPE|18 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMOREHENSION TYPE|21 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.6|4 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

The eccentricity of the hyperbola x^2-y^2=4 is

Prove that the locus of the point of intersection of the tangents at the ends of the normal chords of the hyperbola x^2-y^2=a^2 is a^2(y^2-x^2)=4x^2y^2dot

Prove that the locus of the point of intersection of the tangents at the ends of the normal chords of the hyperbola x^(2)-y^(2)=a^(2)" is " a^(2)(y^(2)-x^(2))=4x^(2)y^(2) .

A circle of constant radius a passes through the origin O and cuts the axes of coordinates at points P and Q . Then the equation of the locus of the foot of perpendicular from O to P Q is (A) (x^2+y^2)(1/(x^2)+1/(y^2))=4a^2 (B) (x^2+y^2)^2(1/(x^2)+1/(y^2))=a^2 (C) (x^2+y^2)^2(1/(x^2)+1/(y^2))=4a^2 (D) (x^2+y^2)(1/(x^2)+1/(y^2))=a^2

Find the common tangents to the hyperbola x^(2)-2y^(2)=4 and the circle x^(2)+y^(2)=1

A triangle is formed by the lines x+y=0,x-y=0, and l x+m y=1. If la n dm vary subject to the condition l^2+m^2=1, then the locus of its circumcenter is (a) (x^2-y^2)^2=x^2+y^2 (b) (x^2+y^2)^2=(x^2-y^2) (c) (x^2+y^2)^2=4x^2y^2 (d) (x^2-y^2)^2=(x^2+y^2)^2

The equation of a tangent to the hyperbola 3x^(2)-y^(2)=3 , parallel to the line y = 2x +4 is

Show that the locus of the midpoints of the chords of the circle x^(2)+y^(2)=a^(2) which are tangent to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 is (x^(2)+y^(2))^(2)=a^(2)x^(2)-b^(2)y^(2) .

Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

Find the equation of tangents to hyperbola x^(2)-y^(2)-4x-2y=0 having slope 2.

CENGAGE PUBLICATION-HYPERBOLA-EXERCISES
  1. The coordinates of a point on the hyperbola (x^2)/(24)-(y^2)/(18)=1 wh...

    Text Solution

    |

  2. The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 me...

    Text Solution

    |

  3. The locus of a point, from where the tangents to the rectangular hyp...

    Text Solution

    |

  4. If tangents P Qa n dP R are drawn from a variable point P to thehyperb...

    Text Solution

    |

  5. The number of points on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 from w...

    Text Solution

    |

  6. If a ray of light incident along the line 3x+(5-4sqrt(2))y=15 gets ref...

    Text Solution

    |

  7. The chord of contact of a point P w.r.t a hyperbola and its auxiliary ...

    Text Solution

    |

  8. The ellipse 4x^2+9y^2=36 and the hyperbola a^2x^2-y^2=4 intersect at r...

    Text Solution

    |

  9. The locus of the point which is such that the chord of contact of ta...

    Text Solution

    |

  10. If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equ...

    Text Solution

    |

  11. If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2...

    Text Solution

    |

  12. Let P(a sectheta, btantheta) and Q(asecphi , btanphi) (where theta+p...

    Text Solution

    |

  13. A normal to the hyperbola (x^2)/4-(y^2)/1=1 has equal intercepts on th...

    Text Solution

    |

  14. Portion of asymptote of hyperbola x^2/a^2-y^2/b^2 = 1 (between centre ...

    Text Solution

    |

  15. If the angle between the asymptotes of hyperbola (x^2)/(a^2)-(y^2)/(b^...

    Text Solution

    |

  16. Let any double ordinate P N P ' of the hyperbola (x^2)/(25)-(y^2)/(16)...

    Text Solution

    |

  17. For hyperbola whose center is at (1, 2) and the asymptotes are paralle...

    Text Solution

    |

  18. The asymptotes of the hyperbola (x^(2))/(a(1)^(2))-(y^(2))/(b(1)^(2))=...

    Text Solution

    |

  19. If S=0 is the equation of the hyperbola x^2+4x y+3y^2-4x+2y+1=0 , then...

    Text Solution

    |

  20. If two distinct tangents can be drawn from the point (alpha, alpha+1) ...

    Text Solution

    |