Home
Class 12
MATHS
From any point on the hyperbola (x^2)/(a...

From any point on the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` , tangents are drawn to the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=2.` The area cut-off by the chord of contact on the asymptotes is equal to: (a) `a/2` (b) `a b` (c) `2a b` (d) `4a b`

A

`a//2`

B

`ab`

C

`2ab`

D

`4ab`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `P(x_(1),y_(1))` be a point on the hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`
The chord of contact of tangents from P to the hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=2` is given by
`(x x_(1))/(a^(2))-(yy_(1))/(b^(2))=2" "(1)`
The equation of the asymptotes are
`(x)/(a)-(y)/(b)=0`
`and (x)/(a)+(y)/(b)=0`
the points of intersection of (1) with the two asymptotes are given by
`x_(1)=(2)/((x_(1)//a)-(y_(1)//b)),y_(1)=(2b)/((x_(1)//a)-(y_(1)//b))`
`x_(2)=(2)/((x_(1)//a)-(y_(1)//b)),y_(2)=(-2b)/((x_(1)//a)-(y_(1)//b))`
`"Area of the said triangle"=(1)/(2)|x_(1)y_(2)-x_(2)y_(1)|`
`=(1)/(2)|-(4abxx2)/((x_(1)^(2)//a^(2))-(y_(1)^(2)//b^(2)))|=4ab`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWERS TYPE|18 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMOREHENSION TYPE|21 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.6|4 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola. (a) Statement 1 and Statement 2 are correct and Statement 2 is the correct explanation for Statement 1. (b) Statement 1 and Statement 2 are correct and Statement 2 is not the correct explanation for Statement 1. (c) Statement 1 is true but Statement 2 is false. (d) Statement 2 is true but Statement 1 is false.

The parametric equations of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) = 1 are-

If hyperbola (x^2)/(b^2)-(y^2)/(a^2)=1 passes through the focus of ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentricity of hyperbola.

Find the equations to the common tangents to the two hyperbolas (x^2)/(a^2)-(y^2)/(b^2)=1 and (y^2)/(a^2)-(x^2)/(b^2)=1

Show that the midpoints of focal chords of a hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 lie on another similar hyperbola.

The slope of the tangent to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( x_(1),y_(1)) is-

The slop of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( a sec theta , b tan theta) is -

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value of b^2

If a x+b y=1 is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then a^2-b^2 is equal to (a) 1/(a^2e^2) (b) a^2e^2 (c) b^2e^2 (d) none of these

The number of points on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 from which mutually perpendicular tangents can be drawn to the circle x^2+y^2=a^2 is/are (a) 0 (b) 2 (c) 3 (d) 4

CENGAGE PUBLICATION-HYPERBOLA-EXERCISES
  1. If the angle between the asymptotes of hyperbola (x^2)/(a^2)-(y^2)/(b^...

    Text Solution

    |

  2. Let any double ordinate P N P ' of the hyperbola (x^2)/(25)-(y^2)/(16)...

    Text Solution

    |

  3. For hyperbola whose center is at (1, 2) and the asymptotes are paralle...

    Text Solution

    |

  4. The asymptotes of the hyperbola (x^(2))/(a(1)^(2))-(y^(2))/(b(1)^(2))=...

    Text Solution

    |

  5. If S=0 is the equation of the hyperbola x^2+4x y+3y^2-4x+2y+1=0 , then...

    Text Solution

    |

  6. If two distinct tangents can be drawn from the point (alpha, alpha+1) ...

    Text Solution

    |

  7. A hyperbola passes through (2,3) and has asymptotes 3x-4y+5=0 and 12 x...

    Text Solution

    |

  8. From any point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , tangents a...

    Text Solution

    |

  9. The combined equation of the asymptotes of the hyperbola 2x^2 + 5xy + ...

    Text Solution

    |

  10. The asymptotes of the hyperbola x y=h x+k y are (1)x-k=0 and y-h=0 (2...

    Text Solution

    |

  11. The center of a rectangular hyperbola lies on the line y=2xdot If one ...

    Text Solution

    |

  12. The equation of a rectangular hyperbola whose asymptotes are x=3 and y...

    Text Solution

    |

  13. If tangents O Q and O R are dawn to variable circles having radius r a...

    Text Solution

    |

  14. Four points are such that the line joining any two points is perpendic...

    Text Solution

    |

  15. If S1a n dS2 are the foci of the hyperbola whose length of the transve...

    Text Solution

    |

  16. Suppose the circle having equation x^2+y^2=3 intersects the rectangula...

    Text Solution

    |

  17. The equation to the chord joining two points (x1,y1)a n d(x2,y2) on th...

    Text Solution

    |

  18. The locus of the foot of the perpendicular from the center of the hy...

    Text Solution

    |

  19. The curve xy = c(c > 0) and the circle x^2 +y^2=1 touch at two points,...

    Text Solution

    |

  20. Let C be a curve which is the locus of the point of intersection of li...

    Text Solution

    |