Home
Class 12
MATHS
Consider the ellipse E1, x^2/a^2+y^2/b^2...

Consider the ellipse `E_1, x^2/a^2+y^2/b^2=1,(a>b)`. An ellipse `E_2` passes through the extremities of the major axis of `E_1` and has its foci at the ends of its minor axis.Consider the following property:Sum of focal distances of any point on an ellipse is equal to its major axis. Equation of `E_2` is

Text Solution

Verified by Experts

The correct Answer is:
D


We have
`b^(2)=a^(2)(1-e_(1)^(2))`
`"and "2be^(2)=2arArre_(2)=(a)/(b)`
`"So, "(1)/(e_(2)^(2))=1-e_(1)^(2)`
`rArr" "e_(2)^(2)(1-e_(1)^(2))=1`
Tangent at point P `(a cos theta, b sin theta)` on the ellipse is
`(x)/(a) cos theta+(y)/(b) sin theta=1`
It passes through `(0, be_(2))`.
`"So, "e_(2) sin theta=1`
`rArr" "sin theta=(1)/(e_(2))`
`therefore" "theta=tan^(2)((1)/(sqrt(e_(2)^(2)-1)))`
`A_(1)=4xx(1)/(2)xxae_(1)xxbe_(2)=2abe_(1)e_(2)`
`A_(2)=((2a)/(e_(1)))((2b)/(e_(2)))=(4ab)/(e_(1)e_(2))`
`(A_(1))/(A_(2))=(e_(1)^(2)e_(2)^(2))/(2)=2`
`rArr" "e_(1)e_(2)=2`
`"But "e_(2)^(2)(1-e_(1)^(2))=1`
`"So, "e_(2)^(2)-4=1`
`therefore" "e_(2)=sqrt5`
`"and "e_(1)=(2)/(sqrt5)`
`therefore" "e_(2):e_(1)=5:2`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MATRIX MATHC TYPE|10 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE TYPE|14 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWERS TYPE|18 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

Chords of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 are drawn through the positive end of the minor axis. Then prove that their midpoints lie on the ellipse.

An ellipse passing through the origin has its foci (3, 4) and (6, 8). The length of its semi-minor axis is bdot Then the value of b/(sqrt(2)) is____

If the maximum distance of any point on the ellipse x^2+2y^2+2x y=1 from its center is r , then r is equal to

Consider an ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a gt b) . A hyperbola has its vertices at the extremities of minor axis of the ellipse and the length of major axis of the ellipse is equal to the distance between the foci of hyperbola. Let e_(1) and e_(2) be the eccentricities of ellipse and hyperbola, respectively. Also, let A_(1) be the area of the quadrilateral fored by joining all the foci and A_(2) be the area of the quadrilateral formed by all the directries. The relation between e_(1) and e_(2) is given by

An ellipse passes through the point (2,3) and its axes along the coordinate axes, 3x +2y -1 = 0 is a tangent to the ellipse, then the equation of the ellipse is

If e and a be the eccentricity and length of semi - major axis of an ellipse, then the difference between the length of its major axis and latus rectum is _

Consider an ellipse x^2/a^2+y^2/b^2=1 Let a hyperbola is having its vertices at the extremities of minor axis of an ellipse and length of major axis of an ellipse is equal to the distance between the foci of hyperbola. Let e_1 and e_2 be the eccentricities of an ellipse and hyperbola respectively. Again let A be the area of the quadrilateral formed by joining all the foci and A, be the area of the quadrilateral formed by all the directrices. The relation between e_1 and e_2 is given by

Find the eccentricity of an ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose latus reactum is half of its major axis.

Find the locus of the midpoints of the all chords drawn from the ends points of the minor axis of an ellipse x^2/a^2+y^2/b^2=1

CENGAGE PUBLICATION-HYPERBOLA-COMOREHENSION TYPE
  1. Consider an ellipse x^2/a^2+y^2/b^2=1 Let a hyperbola is having its v...

    Text Solution

    |

  2. Consider an ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a gt b). A hyper...

    Text Solution

    |

  3. Consider the ellipse E1, x^2/a^2+y^2/b^2=1,(a>b). An ellipse E2 passes...

    Text Solution

    |

  4. Consider the hyperbola (X^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  5. Consider the hyperbola (x^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  6. Consider the hyperbola (x^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  7. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  8. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  9. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  10. Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))...

    Text Solution

    |

  11. Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))...

    Text Solution

    |

  12. Let P(x, y) is a variable point such that |sqrt((x-1)^2+(y-2)^2)-sqr...

    Text Solution

    |

  13. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  14. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  15. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  16. A point P moves such that sum of the slopes of the normals drawn from ...

    Text Solution

    |

  17. A point P moves such that the sum of the slopes of the normals drawn f...

    Text Solution

    |

  18. A point P moves such that the sum of the slopes of the normals drawn f...

    Text Solution

    |

  19. A triangle has its vertices on a rectangular hyperbola. Prove that the...

    Text Solution

    |

  20. A triangle has its vertices on a rectangular hyperbola. Prove that the...

    Text Solution

    |