Home
Class 12
MATHS
The locus of the foot of perpendicular f...

The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola. Consider the foci of a hyperbola as `(-3, -2)` and (5,6) and the foot of perpendicular from the focus (5, 6) upon a tangent to the hyperbola as (2, 5).
The directrix of the hyperbola corresponding to the focus (5, 6) is

A

`(2//9,31//3)`

B

`(7//4,23//4)`

C

`(2//3,9)`

D

`(7//9,7)`

Text Solution

Verified by Experts

The correct Answer is:
C

The tangent is
`y-5=-(5-2)/(6-5)(x-2)`
`"or "3x+y=11`
The hyperbola is
`(x-5)^(2)+(y-6)^(2)=(16)/(5)xx((2x+2y-11)^(2))/(8)`
Solving, we get
`(x-5)^(2)+(5-3x)^(2)=(2)/(5)(2dx+22-6x-11)^(2)`
`"or "5[10x^(2)-40x+50]=2(11-4x)^(2)`
`"or "9x^(2)-12x+4=0`
`"or "(3x-2)^(2)=0`
`"or "x=(2)/(3),y=9`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MATRIX MATHC TYPE|10 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE TYPE|14 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWERS TYPE|18 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola. Consider the foci of a hyperbola as (-3, -2) and (5,6) and the foot of perpendicular from the focus (5, 6) upon a tangent to the hyperbola as (2, 5). The conjugate axis of the hyperbola is

The locus of the foot of the perpendicular from the center of the hyperbola x y=1 on a variable tangent is

Locus of the feet of the perpendiculars drawn from either foci on a variable tangent to the hyperbola 16y^2 -9 x^2 = 1 is

The locus of the foot of perpendicular drawn from the centre of the ellipse x^(2)+3y^(2)=6 on any tangent to it is-

Find the locus of the foot of the perpendicular drawn from the center upon any tangent to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1.

Prove that in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.

Find the value of m for which y = mx + 6 is a tangent to the hyperbola x^2 /100 - y^2 /49 = 1

If the line 2x+sqrt(6)y=2 is a tangent to the hyperbola x^(2)-2y^(2)=4 , then the coordinates of the point of contact are -

Equation of a tangent to the hyperbola 5x^(2) - y^(2) = 5 and which through an external point (2, 8) is

The locus of a point whose chord of contact with respect to the circle x^2+y^2=4 is a tangent to the hyperbola x y=1 is a/an ellipse (b) circle hyperbola (d) parabola

CENGAGE PUBLICATION-HYPERBOLA-COMOREHENSION TYPE
  1. Consider an ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a gt b). A hyper...

    Text Solution

    |

  2. Consider the ellipse E1, x^2/a^2+y^2/b^2=1,(a>b). An ellipse E2 passes...

    Text Solution

    |

  3. Consider the hyperbola (X^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  4. Consider the hyperbola (x^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  5. Consider the hyperbola (x^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  6. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  7. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  8. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  9. Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))...

    Text Solution

    |

  10. Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))...

    Text Solution

    |

  11. Let P(x, y) is a variable point such that |sqrt((x-1)^2+(y-2)^2)-sqr...

    Text Solution

    |

  12. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  13. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  14. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  15. A point P moves such that sum of the slopes of the normals drawn from ...

    Text Solution

    |

  16. A point P moves such that the sum of the slopes of the normals drawn f...

    Text Solution

    |

  17. A point P moves such that the sum of the slopes of the normals drawn f...

    Text Solution

    |

  18. A triangle has its vertices on a rectangular hyperbola. Prove that the...

    Text Solution

    |

  19. A triangle has its vertices on a rectangular hyperbola. Prove that the...

    Text Solution

    |

  20. A triangle has its vertices on a rectangular hyperbola. Prove that the...

    Text Solution

    |