Home
Class 12
MATHS
Let P(x, y) is a variable point such th...

Let `P(x, y)` is a variable point such that `|sqrt((x-1)^2+(y-2)^2)-sqrt((x-5)^2+(y-5)^2)|=3` , which represents hyperbola. The eccentricity e' of the corresponding conjugate hyperbola is (A) `5/3` (B) `4/3` (C) `5/4` (D) `3/sqrt7`

Text Solution

Verified by Experts

The correct Answer is:
B

The slope of the transverse axis is 3/4.
Therefore, the angle of rotation is
`theta=tan^(-1).(3)/(4)`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MATRIX MATHC TYPE|10 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE TYPE|14 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWERS TYPE|18 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

The equation |sqrt(x^(2)+(y-1)^(2))-sqrt(x^(2) +(y+1)^(2))| = k will represent a hyperbola for-

The eccentricity of the conjugate hyperbola of the hyperbola x^2-3y^2=1 is (a) 2 (b) 2sqrt(3) (c) 4 (d) 4/5

The eccentricity of the hyperbola x^2-y^2=4 is

The eccentricity of the hyperbola |sqrt((x-3)^2+(y-2)^2)-sqrt((x+1)^2+(y+1)^2)|=1 is ______

Find the eccentricity of the hyperbola with asymptotes 3x+4y=2 and 4x-3y=2 .

Find the ratio of the eccentricities of the hyperbolas 2x^(2) - 3y^(2) = 1 and 3x^(2) - 2y^(2) = 1

root4(x^(17/2)y^(5/2)sqrt(x^(5/2)sqrt(x^(-7)y^6)))=

If equation |sqrt((x-tantheta)^(2)+(y-sqrt3tantheta)^(2))-sqrt((x-2tantheta)^(2)+y^(2))|=2,theta in[0,pi]-{(pi)/(2)} represents hyperbola, then find the value of theta .

Which of the following can be slope of tangent to the hyperbola 4x^2-y^2=4? (a) 1 (b) -3 (c) 2 (d) -3/2

Let P(4,3) be a point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 . If the normal at P intersects the x-axis at (16,0), then the eccentriclty of the hyperbola is

CENGAGE PUBLICATION-HYPERBOLA-COMOREHENSION TYPE
  1. Consider an ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a gt b). A hyper...

    Text Solution

    |

  2. Consider the ellipse E1, x^2/a^2+y^2/b^2=1,(a>b). An ellipse E2 passes...

    Text Solution

    |

  3. Consider the hyperbola (X^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  4. Consider the hyperbola (x^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  5. Consider the hyperbola (x^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^...

    Text Solution

    |

  6. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  7. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  8. The locus of the foot of perpendicular from my focus of a hyperbola up...

    Text Solution

    |

  9. Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))...

    Text Solution

    |

  10. Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))...

    Text Solution

    |

  11. Let P(x, y) is a variable point such that |sqrt((x-1)^2+(y-2)^2)-sqr...

    Text Solution

    |

  12. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  13. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  14. In a hyperbola, the portion of the tangent intercepted between the asy...

    Text Solution

    |

  15. A point P moves such that sum of the slopes of the normals drawn from ...

    Text Solution

    |

  16. A point P moves such that the sum of the slopes of the normals drawn f...

    Text Solution

    |

  17. A point P moves such that the sum of the slopes of the normals drawn f...

    Text Solution

    |

  18. A triangle has its vertices on a rectangular hyperbola. Prove that the...

    Text Solution

    |

  19. A triangle has its vertices on a rectangular hyperbola. Prove that the...

    Text Solution

    |

  20. A triangle has its vertices on a rectangular hyperbola. Prove that the...

    Text Solution

    |