Home
Class 12
MATHS
Tangents are drawn from the point (alpha...

Tangents are drawn from the point `(alpha, beta)` to the hyperbola `3x^2- 2y^2=6` and are inclined atv angle `theta and phi` to the x-axis.If `tan theta.tan phi=2`, prove that `beta^2 = 2alpha^2 - 7`.

Text Solution

Verified by Experts

The correct Answer is:
7

The given hyperbola is
`3x^(2)-2y^(2)=6`
`"or "(x^(2))/(2)-(y^(2))/(3)=1`
Equation of tangent is
`y=mx pm sqrt(a^(2)m^(2)-b^(2))`
`"or "(y-mx)^(2)=a^(2)m^(2)-b^(2)`
Tangents from the point `(alpha, beta)` will be
`(beta-malpha)^(2)=2m^(2)-3" "("Since"a^(2)=2 and b^(2)=3)`
`"or "m^(2)alpha^(2)+beta^(2)-2malphabeta-2m^(2)+3=0`
`m^(2)(alpha^(2)-2)-2alpha betam+beta^(2)+3=0`
`m_(1)*m_(2)=(beta^(2)+3)/(alpha^(2)-3)=2=tan thetatan phi`
`therefore" "beta^(2)+3=2(alpha^(2)-2)`
`"or "2alpha^(2)-beta^(2)=7`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise JEE MAIN|3 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|6 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise MATRIX MATHC TYPE|10 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 make angles alpha and beta with the x-axis. If tan alpha tan beta=1 , then find the value of c^(2)-d^(2) .

If two tangents drawn from the point (alpha,beta) to the parabola y^2=4x are such that the slope of one tangent is double of the other, then prove that alpha=2/9beta^2dot

Eliminate theta " and " phi tan theta + tan phi = x, cot theta + cot phi = y, theta + phi = alpha

Two tangents are drawn from a point on hyperbola x^(2)-y^(2)=5 to the ellipse (x^(2))/(9)+(y^(2))/(4)=1 . If they make angle alpha and beta with x-axis, then

If 3 tan theta tan phi=1 , then prove that 2 cos (theta+phi)=cos (theta-phi) .

If tan theta + tan phi = x "and" cot theta + cot phi = y, "prove that " cot ( theta + phi) = 1/x -1/y

If tan (theta/2)=tan^3 (phi/2) and tanphi=2tanalpha ,then prove that theta+phi=2alpha

If (1+ tan theta) (1+ tan phi)=2, then the value of (theta+ phi) is

Tangents PQ and PR are drawn from the point (alpha, beta) to the circle x^(2)+y^(2)=a^(2) . Show that the area of Delta PQR is (a(alpha^(2)+ beta^(2)-a^(2))^(3//2))/(alpha^(2)+ beta^(2)) .

If 0 lt alpha lt beta lt (pi)/(2) , prove that, tan alpha-tan beta lt alpha-beta .