Home
Class 12
MATHS
Tangents are drawn to the hyperbola x^2/...

Tangents are drawn to the hyperbola `x^2/9-y^2/4=1` parallet to the sraight line `2x-y=1.` The points of contact of the tangents on the hyperbola are (A) `(9/(2sqrt2),1/sqrt2)` (B) `(-9/(2sqrt2),-1/sqrt2)` (C) `(3sqrt3,-2sqrt2)` (D) `(-3sqrt3,2sqrt2)`

A

`((9)/(2sqrt2),(1)/(sqrt2))`

B

`(-(9)/(2sqrt2),-(1)/(sqrt2))`

C

`(3sqrt3,-2sqrt2)`

D

`(3sqrt3,-2sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

Slope of tangent = 2
The tangent are
`y=2xpmsqrt(9xx4-4)" "("using y"=mx pmsqrt(a^(2)m^(2)-b^(2)))`
`"i.e., "2x-y= pm 4sqrt2`
`"or "(x)/(2sqrt2)-(y)/(4sqrt2)=1 and (x)/(2sqrt2)-(y)/(4sqrt2)=-1`
Comparing it with `(x x_(1))/(9)-(yy_(1))/(4)=1` (Eqn. of tangent to hypebola at point `(x_(1),y_(1))` on it we get the point of contact as `(9//2sqrt2,1//sqrt2) and (-9//2sqrt2, -1//sqrt2)`.
Alternatye Mathod:
The equation of tangent at `P(theta)` is
`((sec theta)/(3))x-((tan theta)/(2))y=1`
`therefore" Slope"=(2 sec theta)/(3 tan theta)=2`
`"or "sin theta=(1)/(3)`
`therefore" "sec theta= pm(3)/(2sqrt2)` and corresponding by tan `theta= pm (1)/(2sqrt2)`
Therefore, the points are `(9//2sqrt2,1//sqrt2)` and `(-9//2sqrt2, -1//sqrt2)`.
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise JEE MAIN|3 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

Find the angles of the triangle whose sides are (sqrt(3)+1)/(2sqrt(2)), (sqrt(3)-1)/(2sqrt(2)) and sqrt(3)/2 .

Simplify: (1)/(sqrt2 +1) + (1)/(sqrt3 + sqrt2) + (1)/(sqrt4 + sqrt3)

Simplify : 1/(sqrt2+sqrt3)-(sqrt3+1)/(2+sqrt3)+(sqrt2+1)/(3+2sqrt2)

Answer any one : simplify : (1)/(sqrt2 + sqrt3) - (sqrt3+1)/(2+sqrt3) +(sqrt2+1)/3+2sqrt2) .

A(1/(sqrt(2)),1/(sqrt(2))) is a point on the circle x^2+y^2=1 and B is another point on the circle such that arc length A B=pi/2 units. Then, the coordinates of B can be (a) (1/(sqrt(2)),-1/sqrt(2)) (b) (-1/(sqrt(2)),1/sqrt(2)) (c) (-1/(sqrt(2)),-1/(sqrt(2))) (d) none of these

Find the equation of the normal to the circle x^2+y^2=9 at the point (1/(sqrt(2)),1/(sqrt(2))) .

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

(8,3sqrt3) is a point on the hyperbola 9x^(2) - 16y^(2) = 144.

int (dx)/(sqrt(1+sqrt(x)))=(4)/(3)(sqrt(x)-2)sqrt(1+sqrt(x))+c

The points on the line x=2 from which the tangents drawn to the circle x^2+y^2=16 are at right angles is (are) (a) (2,2sqrt(7)) (b) (2,2sqrt(5)) (c) (2,-2sqrt(7)) (d) (2,-2sqrt(5))