Home
Class 12
MATHS
If A(3/sqrt(2), sqrt(2)), B(-3/sqrt(2),...

If ` A(3/sqrt(2), sqrt(2))`, `B(-3/sqrt(2), sqrt(2)), C(-3/sqrt(2), -sqrt(2))` and `D(3 cos theta , 2 sin theta)` are four points . If the area of the quadrilateral ABCD is maximum where `theta in (3 pi/2, 2 pi)` then (a) maximum area is 10 sq units (b) `theta = 7 pi/4` (c) `theta = 2 pi- sin^(-1) 3/ sqrt(85)` (d) maximum area is 12 sq units

Text Solution

Verified by Experts

Area of qudrilateral AbCD is maximum when area of ACD is maximum. Area of triangle ACD.
`Delta_1=(1)/(2)||{:(3/sqrt2,,sqrt2,,),(3/sqrt2,,-sqrt2,,),(3sintheta,,2costheta,,),(3/sqrt2,,sqrt2,,):}||`
`=|-3sqrt(2)costheta+3sqrt(2)sintheta|`
`therefore Delta_1("max")=6`, when`theta=(7pi)/(4)` (as `theta epsilon(3pi//2,2pi`))
Maximum area is 12 sq.units (as ABCD is a rectangle).
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.23|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.24|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.21|1 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

costheta - sintheta = 1/sqrt(2) (-pi lt theta lt pi)

If sqrt3 cos theta + sin theta = sqrt2, then the general value of theta is-

Solve 3 cos^2 theta - 2 sqrt3 sin theta cos theta - 3 sin^2 theta = 0

If cos theta - sin theta = sqrt2 sin theta , then show that cos theta+sin theta = sqrt2 cos theta .

If 0^(@) < theta < 90^(@) "and" cos theta + sin theta = sqrt2,"find the value of" cos 3 theta.

If cos theta+sin theta = sqrt2 cos theta , then show cos theta-sin theta = sqrt2 sin theta .

Solve: 2 cos theta+ 2sqrt2 = 3 sec theta

sqrt(3)tantheta tan(theta + pi/3) tan(theta + (2pi)/3) =1

Solve : 2 cos^(2)theta + sin theta le 2 , where pi/2 le theta le (3pi)/2.

Prove that, sin^(2) (pi/8 + theta/2) - sin^(2)(pi/8 - theta/2) = 1/sqrt2 sin theta