Home
Class 12
MATHS
Orthocenter and circumcenter of a Delta ...

Orthocenter and circumcenter of a `Delta A B C` are `(a , b)a n d(c , d)` , respectively. If the coordinates of the vertex `A` are `(x_1,y_1),` then find the coordinates of the middle point of `B Cdot`

Text Solution

Verified by Experts

Given are the orthocentre `H(a,b)` and the circumcentre `O(c,d)`.

`therefore` Centroid, `G=((2c+a)/(2+1),(2d+b)/(2+1))-=((2c+a)/(3),(2d+b)/(3))`

Now, centroid G divides AD in the ratio `2:`, where D is the midpoint of BC.
`therefore (2c+a)/(3)=(2x_2+x_1)/(3)`
and `(2d+b)/(3)=(2y_2+y-1)/(3)`
`therefore x_2=(2c+a -x_1)/(2),y_2=(2d+b-y_1)/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.36|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.37|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.34|1 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

A B C is an isosceles triangle. If the coordinates of the base are B(1,3) and C(-2,7) , the coordinates of vertex A

The coordinates of the vertex A of the triangle ABC are (-3,-4,-2) , if the coordinates of its centroid are (1,-2,2) , then find the coordinates of the mid -point of the side bar(BC) .

Knowledge Check

  • The coordinate of the vertices B and C of the triangle ABC are (5,2,8) and (2, -3, 4) respectively, if the coordinates of the centroid of the triangle are (3, -1,3), then the coordinates of the vertex A are-

    A
    `(2,-2, 2)`
    B
    `(2, -2, -3)`
    C
    `(2,2,-3)`
    D
    `(-2, -2, -3)`
  • Similar Questions

    Explore conceptually related problems

    The coordinates of the vertex A of the triangle ABC are (7,-4) . If the coordinates of the centroid of the triangle be (1,2) , find the coordinates of the mid - point of the side overline(BC) .

    The coordinates of the vertex A of the triangle ABC are ( - 3 , -4, -2) , if the coordinates of its centroid are ( 1 , - 2 , 2) , then find the coordinates of the mid - point of the side overline(BC)

    (i) Write the coordinates of the points A,B,C,D,E. (ii) Write the coordinates of F,G,H,I,J

    The centroid of a triangle ABC is at the point (1,1,1) if the coordinates of A and B are (3,-5,7) and (-1,7,-6) respectively find the coordinates of the point C

    The coordinates of the circumcentre of the triangle ABC are (8,3) , if the coordinates of the vertices A,B and C be (x,-9),(y-2)and(-5,3) respectively , find the values of x and y.

    The sides of the rectangle ABCD are parallel to the coordinate axes. If the coordinates of the vertices B and D be (7,3) and (2,6) respectively , find the coordinates of the vertices A and C .

    The sides of the rectangle ABCD are parallel to the coordinate axis. If the coordinates of the vertices B and D be (7,3) and (2,6) respectively, find the coordinates of the vertices A and C .