Home
Class 12
MATHS
Check how the points A,B and C are situa...

Check how the points A,B and C are situated where `A(4,0),B(-1,-1),C(3,5)` .

Text Solution

Verified by Experts

The correct Answer is:
(i) ABC is triangle right angled at A
(ii) collinear points
(iii) ABC is right angled isoceles triangle

(i) `A(-2,2), B((8,-2),C(-4,-3)`
`AB=sqrt((8-(-2))^2+(-2-2)^(2))`
`=sqrt(100+16)=2sqrt(29)`
`BC=sqrt((8-(-4))^2+(-2-(-3))^(2))`
`=sqrt(144+1)=sqrt(5)=sqrt(29)`
`CA=sqrt((-2-(-4))^2+(2-(-3))^(2))`
`=sqrt(4+25)=sqrt(29)`
Thus, `AB^2+CA^2=BC^2`
So, triangle is right angled at A.
(ii) `A(-a,-b),B(a,b),C(a^2,ab)`
`AB=sqrt((2a)^2+(2b)^(2))=2sqrt(a^2+b^(2))`
`BC=sqrt((a^2-a)^2+b^2(a-1)^(2))=(a-1)sqrt(a^2+b^(2)`
`AC=sqrt((a^2+a)^2+b^2(a+1)^(2))=(a+1)sqrt(a^2+b^2)`
Thus, `AB+BC=AC`.
So, points are collinear.
(iii) `A(4,0),B(-1,-1),C(3,5)`.
`AB=sqrt((-1-4)^2+b^2(-1-0)^(2))=sqrt(25+1)=sqrt(26)`
`BC=sqrt((3+1)^2+b^2(5+1)^(2))=sqrt(16+36)=sqrt(52)`
`CA=sqrt((4-3)^2+b^2(0-5)^(2))=sqrt(1+25)=sqrt(26)`
Thus, `AB=CA and BC62=AB^2+CA62`
So, triangle ABC is right angled isoceles.
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.3|10 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.1|6 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

The coordinates of the points A , B , C and D are ( 1 , 1 , 1) , ( -2 , 4 , 1) , ( - 1 , 5 , 5) and ( 2 , 2 , 5) , prove that ABCD is a square .

If the volume of tetrahedron A B C D is 1 cubic units, where A(0,1,2),B(-1,2,1)a n dC(1,2,1), then the locus of point D is a. x+y-z=3 b. y+z=6 c. y+z=0 d. y+z=-3

Find the length of altitude through A of the triangle A B C , where A-=(-3,0)B-=(4,-1),C-=(5,2)

Calculating the angle of the triangle, prove that the points A(3, 4, -1) , B(1, 5, 1) and C(1, 2, -2) are the vertices of an isosceles triangle.

If the line joining the points (0,3) and (5,-2) is a tangent to the curve y=C/(x+1) , then the value of C is (a) 1 (b) -2 (c) 4 (d) none of these

Find, where possible, A + B, A - B, AB and BA stating with reasons, where the operations are not pssible, when A={:[(4,2,-1),(3,-7,1)]:}and B={:[(2,3),(-3,0),(-1,5)]:}

The reflection of the point (4,-13) about the line 5x+y+6=0 is a. (-1,-14) b. (3,4) c. (0,-0) d. (1,2)

Prove that the points A(-2,-1) B(1,0), C(4,3) and D(1,2) are the vertices of a parallelogram. Is it a rectangle ?

The slope of the tangent to the curve y=sqrt(4-x^2) at the point where the ordinate and the abscissa are equal is (a) -1 (b) 1 (c) 0 (d) none of these

A (4,6) , B (-1,3) and C(2,-2) are three given points . Find the following : coordinates of the point equidistant from A,B,C and the distance of this point from A,B,C.