Home
Class 12
MATHS
The line joining A (b cos alpha, b sin a...

The line joining A `(b cos alpha, b sin alpha )` and B `(a cos beta, a sin beta)`, where `a ne b`, is produced to the point M(x,y) so that AM :MB = b :a Then `xcosfrac(alpha+beta)(2)+ysinfrac(alpha+beta)(2)`

Text Solution

Verified by Experts

The correct Answer is:
NA


`(cos alpha,b sinalpha)alphacosbeta,a sinbeta)`
`(AM)/(BM)=(b)/(a)`
`therefore M((abcosalpha-abcosbeta)/(a-b),(ab sin alpha-ab sin beta)/(a-b))-=M(x,y)`
`rArr(x/y)
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.5|5 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

The line joining A (b cos alpha b sin alpha ) and B (a cos beta , a sin beta ) , where a ne b , is produced to the point M(x , y) so that AM : BM = b : a . Then x "cos" (alpha+beta)/(2)+ y "sin" (alpha+beta)/(2) is equal to _

The lines x cos alpha + y sin alpha = p_1 and x cos beta + y sin beta = p_2 will be perpendicular, if :

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" "tan" (alpha + beta)/2=

If sin alpha = sin beta and cos alpha = cos beta then-

sin alpha + sin beta = a "and" cos alpha + cos beta = b sin (alpha + beta) =

sin alpha + sin beta = a "and" cos alpha + cos beta = b cos (alpha + beta) =

If x cos alpha + y sin alpha=x cos beta+y sin beta,"show that",y=x "tan"(alpha+beta)/2

If the points O (0,0), A(cos alpha, sin alpha), B(cos beta, sin beta) are the vertices of a right-angled triangle, then |sinfrac((alpha-beta))(2)| =

If cos^2 alpha - sin^2 alpha = tan^2 beta , then the value of (cos^2 beta - sin^2 beta) is____

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)