Home
Class 12
MATHS
If (xi ,yi),i=1,2,3, are the vertices...

If `(x_i ,y_i),i=1,2,3,` are the vertices of an equilateral triangle such that `(x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2,` then find the value of `(x_1+x_2+x_3)/(y_1+y_2+y_3)` .

Text Solution

Verified by Experts

The correct Answer is:
`-2//3`

`(x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2`
Therefore,the circumcenter of the triangle formed by points `(x_1,y_1),(x_2,y_2,(x_3,y_3)` is `(-2,3)`. But the triangle is equilateral, so,that centroid is `(-2,3)`.Therefore,
`(x_1+x_2+x_3)/(3)=-2,(y_1+y_2+y_3)/(3)=3`
or `(x_1+x_2+x_3)/(y_1+y_2+y_3)=-(2)/(3)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.5|5 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If (x_i ,y_i),i=1,2,3, are the vertices of an equilateral triangle such that (x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2, then find the value of (x_1+x_2+x_3)/(y_1+y_2+y_3) .

If (x+y,y-2) = (3,1), find the values of x and y.

If (x+1, y-2)=(3,1), find the values of x and y.

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If (x+3+1, y-2/3)=(5/3, 1/3) , find the values of x and y.

If (3x + 2y, 12) = (5, 2x-3y), find the value of x and y.

If (x_1-x_2)^2+(y_1-y_2)^2=a^2 , (x_2-x_3)^2+(y_2-y_3)^2=b^2 , (x_3-x_1)^2+(y_3-y_1)^2=c^2 , and 2s=a+b+c then what willl be the value of 1/4|[x_1,y_1, 1],[x_2,y_2, 1],[x_3,y_3, 1]|^2

If x=2+3i and y=2-3i then find the values of (x^(3)-y^(3))/(x^(3)+y^(3))

If A(x_1,y_1),B(x_2,y_2) and C(x_3,y_3) are the vertices of traingle ABC and x_(1)^(2)+y_(1)^(2)=x_(2)^(2)+y_(2)^(2)=x_3^(2)+y_(3)^(2) , then show that x_1 sin2A+x_2sin2B+x_3sin2C=y_1sin2A+y_2sin2B+y_3sin 2C=0 .

If (3x-5y)/(3x+5y)=1/2 find the value of (3x^2-5y^2)/(3x^2+5y^2)