Home
Class 12
MATHS
Prove that sum(r=0)^n^n Cr(-1)^r[i+i^(2r...

Prove that `sum_(r=0)^n^n C_r(-1)^r[i+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sum.^(n)C_(r)(-1)^(r)[i^(r)+i^(2r)+i^(3r)+u^(4r)]`
`=underset(r=0)overset(n)sum.^(n)C_(r)(-1)^(r)[i^(r) + (-1)^(r) + (-i)^(r)+1]`
` = underset(r=0)overset(n)sum[.^(n)C_(r)(-1)^(r)+.^(n)C_(r)+.^(n)C_(r)i^(r)+.^(n)C_(r)(-1)^(r)]`
`= (1-r)^(n) + (1+1)^(n) + (1+i)^(n) + (1-i)^(n)`
`=(sqrt(2))^(n) (1/(sqrt(2))-i/(sqrt(2)))^(n) + (sqrt(2))^(n) (1/(sqrt(2))+(i)/(sqrt(2)))^(n) + 2^(n)`
`= (sqrt(2))^(n)(cos'pi/4-isin'(pi)/(4))^(n)+(sqrt(2))^(n)(cos'(pi)/(4) + isin'(pi)/(4))^(n)+2^(n)`
`=(sqrt(2))^(n)(cos'(npi)/(4) - isin'(npi)/(4))+(sqrt(2))^(n)(cos'(npi)/(4) + i sin'(npi)/(4)) + 2^(n)`
` = 2(sqrt(2))^(n) cos'(npi)/(4) + 2^(n)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)(.^n C_r)=1/n .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((n C_r)/((r+3)C_3))